Speaker
Description
Jets encode the full evolution between the partonic state immediately following a hard-scattering interaction and the hadronic state measured in particle detectors. While only approximately 60% of the jet content corresponds to charged particles, this content can be measured with significantly higher precision than neutral particles such as photons or neutral hadrons. These measurements can be used to pose stringent tests of perturbative QCD calculations, as well as to study non-perturbative physics such as hadronization and underlying-event effects. In this talk we present an overview of recent charged-jet substructure measurements from pp collisions in ALICE, including generalized angularities, primary jet Lund plane, dynamical grooming, and angular distances between different jet axes for groomed and inclusive jets. These results provide new insights into the evolution of jets by comparing ALICE measurements to predictions from different event generators and pQCD calculations.