Measurements of Jet Substructure in Proton-Proton Collisions with ALICE

Rey Cruz-Torres On behalf of the ALICE Collaboration

22nd edition PANIC Lisbon Portugal Particles and Nuclei International Conference

Jets are Rich in Substructure

Jet Substructure Measurements in pp Collisions

Testing our understanding of QCD:

Quark vs. gluon jets
Validity of perturbative QCD predictions
Study of non-perturbative physics (hadronization)
Understanding interplay between the two

Baseline for measurements in heavyion collisions to study QGP

Charged-jets for substructure measurements:

□ ALICE high-resolution tracking (ITS+TPC) → high-precision substructure measurement □ jet selection: $|\eta_{jet}| < 0.9 - R$, $p_T^{constit.} > 150 \text{ MeV}/c$

Grooming: systematically removing soft, wide-angle radiation from a jet to mitigate effects such as ISR, MPI, and pileup. **Declustering** Soft Drop: JHEP 1405 (2014) 146 (1402.2657) After reclustering with C-A, decluster and check: $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} \stackrel{?}{>} z_{cut}$ $\Delta R_{12} = \sqrt{(y_1 - y_2)^2 + (\phi_1 - \phi_2)^2}$ \mathbf{Z}_{cut} and $\boldsymbol{\beta}$ free parameters

Grooming: systematically removing soft, wide-angle radiation from a jet to mitigate effects such as ISR, MPI, and pileup. **Declustering** Soft Drop: JHEP 1405 (2014) 146 (1402.2657) After reclustering with C-A, decluster and check: $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_{cut}$ $p_{\mathrm{T,2}}$ $\Delta R_{12} = \sqrt{(y_1 - y_2)^2 + (\phi_1 - \phi_2)^2}$ \mathbf{Z}_{cut} and $\boldsymbol{\beta}$ free parameters Check is the first split satisfies the SD condition

Grooming: systematically removing soft, wide-angle radiation from a jet to mitigate effects such as ISR, MPI, and pileup. **Declustering** Soft Drop: JHEP 1405 (2014) 146 (1402.2657) After reclustering with C-A, decluster and check: $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > \mathbf{z}_{cut}$ $\Delta R_{12} = \sqrt{(y_1 - y_2)^2 + (\phi_1 - \phi_2)^2}$ ΔR_{12}^{\prime} \mathbf{Z}_{cut} and $\boldsymbol{\beta}$ free parameters It does not: - Drop softer branch - check if next split in harder branch **Groomed-away** constituents satisfies SD condition

Grooming: systematically removing soft, wide-angle radiation from a jet to mitigate effects such as ISR, MPI, and pileup. **Declustering** Soft Drop: JHEP 1405 (2014) 146 (1402.2657) After reclustering with C-A, decluster and check: $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_{cut}$ $\Delta R_{12} = \sqrt{(y_1 - y_2)^2 + (\phi_1 - \phi_2)^2}$ \mathbf{Z}_{cut} and $\boldsymbol{\beta}$ free parameters $p_{\mathrm{T},1}$ $p_{\mathrm{T,2}}$ It does not: - Drop softer branch - check if next split in harder branch **Groomed-away** constituente satisfies SD condition

Jet-Substructure Measurements in ALICE

And many more

Jet-Substructure Measurements in ALICE

And many more

coordinates in (y, ϕ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

 Substructure observable: angular difference:

$$\Delta R_{\text{axis}} = \sqrt{(y_2 - y_1)^2 + (\phi_2 - \phi_1)^2}$$

between two definitions of the jet axis

- Different levels of sensitivity to non-perturbative physics

Standard axis:

coordinates in (y, ϕ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

- Groomed axis:

standard axis of groomed jet

 Substructure observable: angular difference:

$$\Delta R_{\text{axis}} = \sqrt{(y_2 - y_1)^2 + (\phi_2 - \phi_1)^2}$$

between two definitions of the jet axis

- Different levels of sensitivity to non-perturbative physics

Standard axis:

coordinates in (y, ϕ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

Groomed axis:

standard axis of groomed jet

- Winner-Takes-All (WTA) axis:
 - recluster jet with CA algorithm
 - 2 \rightarrow 1 prong combination by taking direction of harder prong and $p_{T, tot} = p_{T, 1} + p_{T, 2}$
 - Resulting axis insensitive to soft radiation at leading power

 Substructure observable: angular difference:

$$\Delta R_{\text{axis}} = \sqrt{(y_2 - y_1)^2 + (\phi_2 - \phi_1)^2}$$

between two definitions of the jet axis

- Different levels of sensitivity to non-perturbative physics

Standard—SD Distributions

- □ Probes effect of soft, wide-angle radiation on jet direction → Sensitive to non-perturbative physics
- Shape better described by HERWIG than PYTHIA
- Distributions are narrow: grooming does not change the jet axis significantly
- \Box Stronger grooming \rightarrow larger ΔR_{axis}

Distributions measured for $p_{\rm T}^{\rm ch \ jet} \in (20, 100) \ {\rm GeV}/c$ Charged jets

WTA-Standard/SD Distributions

 Distributions are broader: WTA axis has higher probability to be misaligned wrt Standard/SD axis

- Distributions are insensitive to grooming
- Well described by HERWIG and PYTHIA
- Outlook: Comparisons to pQCD calculations and measurement in Pb-Pb collisions

Distributions measured for $p_{\rm T}^{\rm ch \; jet} \in (20, 100) \; {\rm GeV}/c$ Charged jets

Jet-Substructure Measurements in ALICE

And many more

Jet Angularities

arXiv:2107.11303

Includes both transverse-momentum and angular components with relative weights given by continuous parameter α

 $\alpha > 0 \rightarrow$ IRC-safe observable

Groomed angularities ($\lambda_{\alpha, g}$): same expression as λ_{α} but sum only runs over constituents of groomed jet

Examples of jet angularities: $\Box \lambda_1 \equiv \text{jet girth}$ $\Box \lambda_2 \equiv \text{jet thrust}$

systematic variation of α to test pQCD calculations and universality of nonperturbative shape functions.

Jet Angularities

18

arXiv:2107.11303

JHEP 1804 (2018) 110

- \Box Small λ_{α} : non-perturbative regime
- \Box Large λ_{α} : perturbative regime

Good agreement with SCET calculations in perturbative regime

Groomed Jet Angularities

ALICE

arXiv:2107.11303

JHEP 1804 (2018) 110

First-ever measurement of the groomed jet angularities
Extension of perturbative region (with respect to ungroomed)
Good agreement with SCET calculations

19

Jet-Substructure Measurements in ALICE

And many more

JHEP 12 (2018) 064

$$\Delta R_{ab} = \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2}$$
$$k_{\rm T} = p_{{\rm T},b} \Delta R_{ab}$$

- Representation of the internal structure of jets
- □ Phase-space for emission from each particle corresponds to triangular region in the $(\ln(R/\Delta R), \ln(k_T))$ plane
- Useful to interpret MC parton shower algorithms and resummation of logarithmically enhanced terms in perturbation theory

JHEP 12 (2018) 064

$$\Delta R_{ab} = \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2}$$
$$k_{\rm T} = p_{\rm T, b} \Delta R_{ab}$$

- Representation of the internal structure of jets
- □ Phase-space for emission from each particle corresponds to triangular region in the $(\ln(R/\Delta R), \ln(k_T))$ plane
- Useful to interpret MC parton shower algorithms and resummation of logarithmically enhanced terms in perturbation theory

JHEP 12 (2018) 064

$$\Delta R_{ab} = \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2}$$
$$k_{\rm T} = p_{{\rm T},b} \Delta R_{ab}$$

Representation of the internal structure of jets

- □ Phase-space for emission from each particle corresponds to triangular region in the $(\ln(R/\Delta R), \ln(k_T))$ plane
- Useful to interpret MC parton shower algorithms and resummation of logarithmically enhanced terms in perturbation theory

JHEP 12 (2018) 064

$$\Delta R_{ab} = \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2}$$
$$k_{\rm T} = p_{{\rm T},b} \Delta R_{ab}$$

Representation of the internal structure of jets

- □ Phase-space for emission from each particle corresponds to triangular region in the $(\ln(R/\Delta R), \ln(k_T))$ plane
- Useful to interpret MC parton shower algorithms and resummation of logarithmically enhanced terms in perturbation theory

Primary Lund Plane

$$\Delta R_{ab} = \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2}$$
$$k_{\rm T} = p_{{\rm T},b} \Delta R_{ab}$$

- Representation of the internal structure of jets
- □ Phase-space for emission from each particle corresponds to triangular region in the $(\ln(R/\Delta R), \ln(k_T))$ plane
- Useful to interpret MC parton shower algorithms and resummation of logarithmically enhanced terms in perturbation theory

Primary Lund Plane

26

Summary

- Measurements of jet substructure in proton-proton collisions provide new insights into our understanding of QCD and the interplay between perturbative and non-perturbative physics
- Charged jets can be measured with higher precision \rightarrow ideal for substructure
- A suite of jet-substructure observables is needed to probe the entire phase space of jet formation and evolution.
- ALICE has a broad program measuring jet substructure in pp collisions:
 - Jet-axis differences
 - (un)groomed angularities
 - Primary Lund Plane
 - Many many more not discussed