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Jets are Rich in Substructure

Significant scale difference between
parton from hard-scattering and
hadrons measured in detector

! A

Large phase space
for jet formation
and evolution

Jet

Suite of

observables v
needed to explore
this phase space

>

Hadronization

ALICE



Jet Substructure Measurements in pp Collisions N

Testing our understanding of QCD:

[ Quark vs. gluon jets

[ Validity of perturbative QCD predictions
[J Study of non-perturbative physics (hadronization) [ﬁ
[J Understanding interplay between the two

Non-Perturbative Resummation Fixed Order
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Charged-jets for substructure measurements:
[J ALICE high-resolution tracking (ITS+TPC) — high-precision substructure measurement

Ojet selection: |77, | < 0.9 — R, pf*™"t > 150 MeV/c




Grooming and Soft Drop

ALICE

Grooming: systematically removing soft, wide-angle radiation i
from a jet to mitigate effects such as ISR, MPI, and pileup. ' Declustering

Soft Drop: JHEP 1405 (2014) 146 (1402.2657)
After reclustering with C-A, decluster and check:

ARy =[G =3 + (1 — )

Z.,. and f free parameters




Grooming and Soft Drop

Grooming: systematically removing soft, wide-angle radiation
from a jet to mitigate effects such as ISR, MPI, and pileup.

Soft Drop: JHEP 1405 (2014) 146 (1402.2657)
After reclustering with C-A, decluster and check:

ARy, = \/(Y1 - }’2)2 + (¢ — ¢2)2

z... and /? free parameters
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Check is the first split satisfies the SD condition



Grooming and Soft Drop G,

ALICE

Grooming: systematically removing soft, wide-angle radiation

from a jet to mitigate effects such as ISR, MPI, and pileup. ' Declustering

\)

Soft Drop: JHEP 1405 (2014) 146 (1402.2657)
After reclustering with C-A, decluster and check:

ARy, = \/(h - }’2)2 + (¢ — Cbz)z

z... and /? free parameters
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- Drop softer branch e T
- check if next split in harder branch Groomed-away
satisfies SD condition constituents




Grooming and Soft Drop

ALICE

Grooming: systematically removing soft, wide-angle radiation
from a jet to mitigate effects such as ISR, MPI, and pileup. ’ Declustering

\)

Soft Drop: JHEP 1405 (2014) 146 (1402.2657)
After reclustering with C-A, decluster and check:

ARy, = \/(Y1 - }’2)2 + (¢ — Cbz)z

z... and /? free parameters

cut

It does not:
- Drop softer branch
- check if next split in harder branch

Groomed-away
satisfies SD condition constituents



Grooming and Soft Drop

ALICE

Grooming: systematically removing soft, wide-angle radiation
from a jet to mitigate effects such as ISR, MPI, and pileup. ' Declustering

\ 4

Soft Drop: JHEP 1405 (2014) 146 (1402.2657)
After reclustering with C-A, decluster and check:

ARy, = \/(M - )’2)2 + (¢ — ¢2)2

Z.,. and f free parameters

It does:

- What remains defines the groomed jet Groomed-away
constituents



Jet-Substructure Measurements in ALICE %

ALICE

Jet
Angularities

Groomed z4 and Ry
arXiv:2107.12984

arXiv:2107.11303

/" First measurement
of DO-tagged Soft

Drop 7 |, Rg and rngp,

\_https://cds.cern.ch/record/271 900
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N-subjettiness

arXiv:2105.04936

arXiv:2106.05713

And many more g


https://inspirehep.net/literature/1862792
https://inspirehep.net/literature/1891385
https://inspirehep.net/literature/1893479
https://inspirehep.net/literature/1867966
https://cds.cern.ch/record/2719005

Jet-Substructure Measurements in ALICE

ALICE

~ Jet-axis Differences |
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Jet-Axis Differences

ALICE
JHEP 04 (2020) 211 (1911.06840) A WTA
— Groomed
=== """ =
Standard
o )
y

- Standard axis: 22y

coordinates in (y, ¢) of jet clustered with anti-k;
algorithm and combined with E-Scheme

- Substructure observable: angular
difference:

2 2
ARy =1/ 0 = 02+ (62— )
between two definitions of the jet
axis

- Different levels of sensitivity to non-perturbative physics 11



Jet-Axis Differences

ALICE
JHEP 04 (2020) 211 (1911.06840) A WTA
— Groomed
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- Standard axis: 22y

coordinates in (y, ¢) of jet clustered with anti-k;
algorithm and combined with E-Scheme

- Groomed axis:

standard axis of groomed jet - Substructure observable: angular

difference:

2 2
ARy =1/ 0 = 02+ (62— )
between two definitions of the jet
axis

- Different levels of sensitivity to non-perturbative physics 10



Jet-Axis Differences

ALICE
JHEP 04 (2020) 211 (1911.06840) A WTA
— Groomed
= :‘—'—"==: - -
Standard
\\ \
- Standard axis: &
coordinates in (y, ¢) of jet clustered with anti-k;
algorithm and combined with E-Scheme
- Groomed axis: |
standard axis of groomed jet - S}Jbstructure observable: angular
difference:
- Wi . - i _ 2 2
Winner-Takes-All (WTA) axis: AR, ... = \/()’2 — )2+ (¢, — ¢py)
- recluster jet with CA algorithm o _
- 2 — 1 prong combination by taking direction be.tween two definitions of the jet
axis

of harder prong and pr (o« = P1.1 + Pr.2

- Resulting axis insensitive to soft radiation at
leading power

- Different levels of sensitivity to non-perturbative physics 13



Standard—SD Distributions %

ALICE
Z % 1 04 ‘_ ¢ Standard-SD:z ,=0.1,p8 =;f(.)v§(f§a:a Y |
2 m Standard-SD:z,,=01,4211""=099)3
O % - ¢ Standard-SD: z,,=0.1, 221{**=0997) ] == ‘; g 100 dme(;j (SD)
O | [ + Standard-SD:iz,,=0.1,543{%-0007) 1| T mis T~ Stanaar
~— 2 10 E_ Sys. uncertainty ] —E ................ WTA
: PYTHIAS Monash 2013 ] A R Standard—SD_zeer L
102 E HERWIG7 ) axis
ALICE Preliminary
10 3 S e E
R i 0O Probes effect of soft, wide-angle radiation on
1L pp /5 =5.02 Tev 4 jet direction — Sensitive to non-perturbative
" R=04 |n |<05 ; physics
_1-40<p ,t<60GeV/C .
107" = Charged-particle jets anti-k, % | o Shape better described by HERWIG than
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WTA—Standard/SD Distributions

ALICE
A RStandard —WTA «
%’103 - . Standard - WTA _ AXIS N e R .-
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Jet-Substructure Measurements in ALICE

ALICE

Jet

Angularities
arXiv:2107.11303
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Jet Angularities %

ALICE
arXiv:2107.11303

Includes both transverse-momentum and angular components with relative
weights given by continuous parameter a

= 3 (2 (3

a > () — IRC-safe observable

Groomed angularities (4, ,): same expression as 4, but sum only runs over

a, g)'
constituents of groomed jet

Examples of jet angularities: systematic variation of a to test pQCD
O A, = jet girth calculations and universality of non-
O A, = jet thrust perturbative shape functions.

JHEP 11 (2014) 129 17


https://inspirehep.net/literature/1891385

Jet Angularities

arXiv:2107.11303

O Small 4,: non-perturbative regime

O Large 4, perturbative regime
O Good agreement with SCET calculations in perturbative regime

JHEP 1804 (2018) 110
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https://inspirehep.net/literature/1891385

Groomed Jet Angularities

arXiv:2107.11303 JHEP 1804 (2018) 110

O First-ever measurement of the groomed jet angularities

O Extension of perturbative region (with respect to ungroomed)
O Good agreement with SCET calculations
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Jet-Substructure Measurements in ALICE

ALICE

Primary Lund Plane )
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JHEP 12 (2018) 064

Lund Map and Planes

O Representation of the internal structure of jets

O Phase-space for emission from each particle corresponds
to triangular region in the (In(R/AR), In(k1)) plane

BRY =/ Gu = 30 + (b -

Kt :pT,bARab
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N nR/AR)

¢b)2 O Useful to interpret MC parton shower algorithms and
resummation of logarithmically enhanced terms in
perturbation theory
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In(kr)

In(R/AR)

Primary Lund Plane: coordinates from emissions from harder prong 01



Lund Map and Planes

O Representation of the internal structure of jets

JHEP 12 (2018) 064 o _
O Phase-space for emission from each particle corresponds

to triangular region in the (In(R/AR), In(k)) plane

AR =\/ —v.)% + — b.)? O Useful to interpret MC parton shower algorithms and
ab Oa = 2)"+ (90 = &) resummation of logarithmically enhanced terms in

perturbation theory

kT — pT, bARab
'Iq-; ARab (17) (,7)
= (a) (a) /(.,
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Primary Lund Plane: coordinates from emissions from harder prong 00



Lund Map and Planes

O Representation of the internal structure of jets

JHEP 12 (2018) 064 o _
O Phase-space for emission from each particle corresponds

to triangular region in the (In(R/AR), In(k)) plane

AR =\/ —v.)% + — b.)? O Useful to interpret MC parton shower algorithms and
ab Oa = 2)"+ (90 = &) resummation of logarithmically enhanced terms in

perturbation theory
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Lund Map and Planes

O Representation of the internal structure of jets

O Phase-space for emission from each particle corresponds
to triangular region in the (In(R/AR), In(k)) plane

AR, = \/ (v, — ) + (¢, — ¢,)*> | O Useful to interpret MC parton shower algorithms and

resummation of logarithmically enhanced terms in

perturbation theory
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Primary Lund Plane

O Representation of the internal structure of jets

JHEP 12 (2018) 064 o _
O Phase-space for emission from each particle corresponds

to triangular region in the (In(R/AR), In(k1)) plane

AR , = \/ —v.)% + — b.)? O Useful to interpret MC parton shower algorithms and
ab Oa = 2)"+ (90 = &) resummation of logarithmically enhanced terms in
perturbation theory

kT — pT, bARab

~~ A
> . .
8 Primary Lund-plane regions
N

- AR . (b) (b) v

()] ab ~—

- (a) (a) (c) -

: ——— ‘ / —
(C) a
pe

o~ — S

§ £ 5 3

a = k= )

T 2

= (b)

— .

g

E %

a 7 non-pert. (small k)

In(R/AR) In(R/AR) <

>

In(R/AR)
Primary Lund Plane: coordinates from emissions from harder prong 05



Primary Lund Plane

ALICE
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Summary BILICE

Measurements of jet substructure in proton-proton collisions provide new
insights into our understanding of QCD and the interplay between perturbative
and non-perturbative physics

Charged jets can be measured with higher precision — ideal for substructure
A suite of jet-substructure observables is needed to probe the entire phase
space of jet formation and evolution.

ALICE has a broad program measuring jet substructure in pp collisions:

- Jet-axis differences

- (un)groomed angularities

- Primary Lund Plane

- Many many more not discussed
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