Conveners
Session 1
- Helena Pais (UC)
Recent detections of gravitational waves provide a new, exciting tool to observe the Universe. I will introduce this new method of directly studying the spacetime distortions produced by massive objects, and focus on recent findings of the LIGO-Virgo detector network, reporting on the binary systems of black holes and neutron stars, the latter also observed in electromagnetic waves.
Dark Matter (DM) particles from the galactic halo can get gravitationally trapped inside stars. Once these particles settle in the interior of the star, DM-DM and DM-nucleon interactions can have an impact on the standard stellar evolution and the observations associated with it. These effects can in turn be used to probe the nature of galactic DM.
In this work I will discuss the underlying...
The nature and properties of dark matter are arguably among the most important open issues in science. Interesting candidates for dark matter include light bosonic fields. Such scalar fields can give rise to confined structures, as boson stars or Q-balls. Boson stars are interesting hypothetical new "dark matter stars", but also good descriptions of dark matter haloes when the fields are...
Little Higgs Models are a compelling solution to the hierarchy problem, avoiding quadratically divergent contributions to the Higgs mass through collective symmetry breaking. A signature of this model (and other composite Higgs models) would be the existence of heavy vector like fermions. In this talk we will explore the phenomelogical signatures of a heavy vector like lepton with exotic decays.