NFIST LIP Inside Views 2018

UTC
LIP

LIP

    • LIP
      • 1
        Introduction to LIP
        Speakers: Dr Mário Pimenta (LIP), Mr Pedro Abreu (LIP)
        Slides
    • CMS
      • 2
        Introduction to CMS
        Encontro com os investigadores do LIP na experiência CMS/CERN: uma oportunidade de conhecer as pesquisas de nova física no LHC. O LHC é o acelerador de partículas mais potente do mundo, está localizado no CERN, e permite explorar os constituintes da matéria ao nível mais fundamental. O LIP é membro fundador da experiência CMS, tendo sido responsável pela concepção e construção de componentes importantes do detector. Várias áreas do programa de física do LHC foram lideradas por membros do LIP, que contribuíram entre outras para a descoberta do bosão de Higgs em 2012. O grupo está activamente envolvido na análise dos dados mais recentes nas seguintes áreas de física: bosão de Higgs, quark top, quark b, supersimetria, interação electrofraca, interação forte e plasma de quarks e gluões.
        Speaker: Nuno Leonardo (LIP)
        Slides
      • 3
        Higgs & SUSY
        Após a descoberta do bosão de Higgs no LHC, tornou-se importante determinar se esta nova partícula faz parte de uma teoria mais abrangente e que permance por agora desconhecida. Os físicos no grupo CMS do LIP estão a investigar esta possibilidade através de novos modos de produção e decaimentodo Higgs e através da medição das suas propriedades. Buscas de supersimetria (Susy) são outro grande eixo de pesquisas do LHC, prosseguido no nosso grupo. A Susy pode explicar a matéria escura fria (Cold Dark Matter) observada do universo, bem como unificar as interações microscópicas com a gravidade. Todas essas pesquisas são realizadas com ferramentas de ponta, tais como métodos de machine-learning (ML). Os alunos têm a possibilidade de contribuir para essas buscas, nomeadamente melhorando as ferramentas de ML.
        Speakers: Mr Giles Strong (LIP), Pedrame Bargassa (LIP)
        Slides
      • 4
        Heavy flavor & QGP
        Beauty e charm como sondas da interação forte. A interacção forte é a mais intensa das forças da Natureza. Liga os quarks nos protões e neutrões dos núcleos atómicos, determinando a estructura íntima do mundo visível: 99% da matéria visível é uma manifestação tangível da força forte. Todavia a nossa compreensão atual desta força é ainda primitiva: não percebemos bem como protões e neutrões, blocos da matéria visível, se formam partindo dos três quarks de que cada um deles é constituído. Na verdade, os protótipos mais simples de sistemas elementares governados pela força forte são as partículas designadas por “quarkonium”, constituídas apenas por um par de quarks, charm e anticharm ou beauty e antibeauty. O estudo de como os estados quarkonia são formados pode ser visto como o equivalente de determinar as “Leis de Kepler” (relações fenomenológicas básicas entre observáveis) da dinâmica da força forte, algo que ainda não existe hoje. A equipa do LIP investiga a natureza da interação forte e as propriedades da sopa primordial de quarks e gluões, explorando as colisões de protão-protão e de iões pesados que têm lugar no LHC, utilizando sondas inovadoras baseadas em quarks pesados.
        Speakers: Bruno Alves, Mariana Araujo, Nuno Leonardo (LIP)
        Slides
      • 5
        Detector upgrades & medical physics
        Desafios e detectores para o futuro HL-LHC. Os detectores da próxima década preparam-se hoje. O futuro high-luminosity LHC (HL-LHC) permitirá uma expansão considerável do programa de física. O ambiente será caracterizado por uma densidade de colisões muito elevada, o que por sua vez impõe grandes desafios aos detectores que nele irão operar. O grande “upgrade” dos detectores com vista à operação no HL-LHC desenrola-se no período de 2018 a 2023. O LIP tem desempenhado um papel importante na construção e desenvolvimento dos detectores e electrónica usada no LHC. Presentemente, o grupo lidera o novo espectrómetro de protões (CT-PPS) integrado no detector CMS em 2016, que permite a análise de interacções fotão-fotão no LHC. O desenvolvimento e teste de electrónica para a próxima geração de detectores de CMS é também um dos focos do LIP. O grupo é um dos proponentes de um novo sistema de deteção a ser instalado em CMS que permitirá distinguir temporalmente as colisões no HL-LHC. No desenvolvimento da electrónica associada beneficiamos ainda de sinergias com sistemas de deteção que desenvolvemos no contexto de aplicações de física médica (nomeadamente, imagiologia PET).
        Speakers: Cristovao Silva, Tahereh Niknejad (LIP)
        Slides
    • ATLAS

      The LHC is currently the most powerful hadron accelerator in the world that serves to study the fundamental particles. Our team is part of the international collaboration of physicists and engineers that operates the gigantic ATLAS experience at CERN. This experiment registers the proton or lead ion collisions we next examine in order to address some of the most fundamental issues in today's physics.

      • 6
        Introduction to ATLAS
        The LHC is currently the most powerful hadron accelerator in the world that serves to study the fundamental particles. Our team is part of the international collaboration of physicists and engineers that operates the gigantic ATLAS experience at CERN. This experiment registers the proton or lead ion collisions we next examine in order to address some of the most fundamental issues in today's physic. In these visits students will be able to have contact with the group and discuss with researchers and doctoral students not only the challenges and opportunities in each of these areas, but also to know what it means to work in an international environment, competitive and as challenging as the CERN.
        Slides
      • 7
        Higgs
        How does the Higgs boson interact, which we discovered a few years ago? We think that the particle we discover is at the origin of the mass of all elementary particles. But to know if it really behaves as predicted in theory we have to study in detail its properties. If we find out that they are different than expected, we may have the first evidence of new physics in the LHC!
      • 8
        Heavy ions
        How did the plasma of quarks and gluons behave, this very dense and hot state of matter that existed shortly after the Big Bang? This plasma, which we are able to recreate by colliding lead ions into colossal energies, has very different properties from normal matter. We can "look" at its interior by examining jets of particles that cross it. It is a unique opportunity to study the subject under extreme conditions!
      • 9
        Advanced processing
        The collisions occur in the LHC every 25 nanoseconds (40 million times per second). Of these, only very few are interesting for physics studies. In order to be able to analyze and identify interesting collisions in real time we use the most advanced electronic and computer systems. Our group is a leader in the jet picking system, and we are already developing advanced algorithms that will be used in the next evolution of the LHC in 2020.
    • Auger

      The LIP participates in the Pierre Auger Observatory, which studies the cosmic rays of extreme energies. These very rare particles (~ 1 / century / km ^ 2) collide with Earth's atmosphere producing gigantic particle showers that can be detected. The study of these particles allows to explore the most violent phenomena of the Universe. In addition, their interaction with the atmosphere occurs at energies well above those available at the LHC, providing a unique window to explore new physics on the scale of energy of 100 TeV. LIP participates in the Observatory covering a wide range of range of developments, from new detector concepts to complex data analyzes, and also the creation of theoretical models to characterize the physics of the shower.

    • COMPASS: exploring the nucleon structure

      The LIP COMPASS group proposes an interactive journey through the experiment, from the detector control to data acquisition, reconstruction and analysis. The experiment seeks to understand the origin of one of the fundamental properties of hadronic matter: spin. More generically, it contributes in characterizing the dynamics inside nucleons. Some of the most relevant results obtained in recent years will be shown from a practical perspective: how, from a specific measurement we come to conclusions about the physics that govern the nucleons.

      slides
    • Espaço

      The activities related to space / ESA are based on the previous experience of LIP in the areas of radiation interaction, radiation detection and instrumentation experiments for experimental particle physics. The activities developed began with the application of the Geant4 simulation tool to astroparticle experiments in a first contract concluded between LIP and the European Space Agency (ESA) in 2003. Since then, the work developed has been supported mainly by contracts between the LIP and the ESA, the LIP being wholly or partly responsible for the projects. These activities have been a source of collaboration between LIP and other institutes, companies and industry as well as scientists outside LIP and include:
      - Study and modeling of the radiation environment in space, including planetary radiation environments, namely the Moon, Mars, Europe, Ganymede and asteroids.
      - Data analysis of energy particle / radiation detectors in space missions;
      - Study of the SEP propagation models - solar energy particle events and test of these models with real data, in the continuation of the activity started with the project "Portuguese Participation in the Heliospheric Network";
      - Study and development of concepts for radiation monitors (based on Si sensors and / or scintillators) and exploration of these concepts for use in different planetary and interplanetary environments, both in the support of missions and in the analysis of scientific data;
      - Study, modeling and beam testing of the effects of radiation on EEE components used in missions in space;
      - Study of the biological effects of the radiation environment on space, atmospheres and planetary surfaces.
      - Study and development of mitigation strategies for the risks of radiation exposure in space, both for the systems and components of the missions as well as for the crews.
      You can come to know the people who work in this area and get involved in these projects!

      slides
    • Nuclear

      Visit to the Nuclear Physics laboratories in C8 where we can show how to make a fine target for an experiment with medium energy beams (for example in ISOLDE) and how to measure its thickness (without breaking it!).

    • Neutrinos

      Neutrinos, the puzzling elementary particle, with neutral electric charge and tiny mass, interact with matter very rarely, and are among the most abundant particles in the Universe. The LIP neutrino physics team was created in 2005 to participate in SNO and integrates since the beginning the SNO+ experiment. The main goal is the observation of neutrinoless double beta decay to probe the possible Majorana character of neutrinos and measure its absolute mass. Measurements of neutrinos from the Sun, the Earth, Supernovae and nuclear reactors are also planned.

      slides
    • AMS

      AMS is a broad international collaboration operating a cosmic-ray observatory installed on the International Space Station (ISS). ESA and NASA are two of the main supporting organizations for the experiment. The main goals of AMS are to perform a detailed measurement of the cosmic-ray spectrum, to search for cosmological antimatter and to search for dark matter. The LIP group is centered in the RICH subdetector and in AMS data analysis, particularly the study of the solar modulation effect in cosmic rays.

    • Resources for Students
      • 10
        LIP Summer Students Program
        We receive physics students for periods from 2 weeks to 2 months over the Summer, in research internships where the students get integrated in ongoing research projects. Register in April!
        2017 Final Workshop
        2017 tutorials
      • 11
        Course on LHC Physics
        The course serves as an introduction to LHC physics. For anyone with a basic course on particle physics and/or to be familiar with the basics of physics. Register by March 3rd!
        2017 materials
        Registration page
      • 12
        ROC @ IST
        Stop by LIP's "Remote Operation Center" at IST, to get a feeling of operating and monitoring a runnig experiment -- or participate in an actual shift!
      • 13
        Photos
        flickr