

Activities at TagusLIP

Tahereh Niknejad

PET: Positron Emission Tomography

• How it works?

- Drug (Glucose) is labeled with positron emitting radionuclide.
- Glucose mainly concentrate in cancerous cells
- ✓ Trace distribution of the drug in body
- ✓ Radiation dose fairly small

PET: detection

PET: Camera

PET: Time of Flight (TOF)

 \rightarrow Without timing the positron emission could have happened anywhere along the line of response (LOR).

12/23/2005 → Time of flight can effectively confine the positron emission point. TUDelft

D

511keV

gamma

 \rightarrow Timing is determined by the full width at half maximum (FWHM) of the coincidence time resolution (CTR). Colon cancer, left upper quadrant peritoneal node 13.4 mCi; 2 hr post-injection

Non-TOF

CERN Technology transfer

Accelerate particle beams

Detect particles

Large scale **Computing** (Grid)

Grid computing for medical data management and analysis

PET vs photon detection in High Energy Physics (HEP): same challenges

CMS

From HEP to PET

Requirements for HEP crystal calorimeters

Crystals

- High density (>6gr/cm³)
- Fast emission (<100 ns, visible spectrum)
- Moderate to high light yield
- High radiation resistance

Photodetectors

- Compact
- High quantum efficiency
- High stability

Readout electronics

- Fast shaping
- Low noise

Software

- Handling of high quality data
- General design
- Compact integration of a large number of channels (>>10'000)

transfe Technology

ereh Niknejad (tniknejad

Requirements for PET scanners

Crystals

- High density (>7gr/cm³)
- Fast emission (<100 ns, visible spectrum)
- Moderate to high light yield
- High radiation resistance

Photodetectors

- Compact
- High quantum efficiency
- High stability
- Readout electronics
- Fast shaping
- Low noise

Software

- Handling of high quality data
- General design
 - Compact integration of a large number of channels (>>10'000)

- Development and validation of medical imaging technologies (readout electronics and detector modules)
- Design, produce and test/validate prototype imaging equipment.
- Design of new ASICs and front-end boards for the CMS upgrade

ClearPEM (2010)

- PET detector dedicated to breast cancer screening
- Extremely sensitive to small tumor masses
- Spatial resolution1-2 mm
- High counting sensitivity

LYSO+APD

EndoTOFPET (2013)

PET detector dedicated to pancreatic cancer screening
Spatial resolution ~1 mm

- Timing resolution ~350 ps FWHM
- High counting sensitivity

TOF ASIC for PET and HEP

64chASIC (5x5mm)

Front end module 128ch

BIAS an Niknejad (MRZZd@lip.pt)

• Highly integrated readout electronics scalable to several hundreds of channels

ASIC for TOF applications

Thank you for you attention

Any question?

Backup slides

Depth of interaction

 \rightarrow Without DOI wrong LORs are assigned to the events

\rightarrow Depth-of-interaction determination

Dual Ended Readout

Stacked Detector Phoswich

dual Layer with Offset

Multiple layer with offset

PhD Thesis Defense

\rightarrow Drawbacks: Complexity and costs

 \rightarrow Only one side readout

→A light guide is placed on the top of the module (same dimension of the matrix).

The reflector recirculates the light and redirects it to the MPPC array.

→Optical treatment of the lateral surfaces of the crystals: depolished

Design and fabrication of TOF-PET demonstrator

→ 16 Detector Modules (8 on each side)
➢ Ring diameter: 235 mm

 \rightarrow Each module 2x4 array of crystal

→ SiPM from Hamamtsu

- Active area 3x3 mm²
- Array of 4x4

Tahereh Niknejad

→ Using cooling system: ~19°C

→ LYSO crystal block

- Array of 4x4 LYSO
- Pixel size 3x3x15 mm³
- Separated by Vikuiti foils
- Pitch 3.2 mm

