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GRAPHS

® A graph consists of:

®  Nodes/Vertices, each with a set of
features

¢ Edges which connect vertices together
and imply an interaction between the pair
of nodes

®  Edges can be unidirectional and not all
possible edges have to exist

¢  Twitter example:

®  People (nodes) with tweets (features)

connected by both uni- and bi-directional
edges (following & mutual follows)

Not everyone is connected to everyone
else (some edges don’t exist)
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GRAPHS

® Can represent graph as:

A matrix of nodes with features (N, F) or
(FN)

An (N,N) adjacency matrix of connections
between nodes

N:F,=3,F, =-07,..

Receive
Nodes are also connected to themselves
F 0 0
1 0.2
Send 0 1 1
N |3 -0.7 | .. 0 1 1
0 1 1




GRAPH-TASKS

Three general task categories Gy Target, = 22

Node-level predictions: /

®  Given a graph, predict the values of
unknown features for every node

Edge-level predictions:

®  Given a set of nodes, predict whether
each possible edge-connection exists

Graph-level predictions:

Given a graph, predict the values of
unknown features for the entire graph \
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HEP EXAMPLES

Generally in HEP, assume every node is connected

to every other node
®  All edges exist and are bi-directional
Node-level predictions: Assign detector hits to
different showers (e.g. Oasim et al. 2019, right)
° Hits are nodes with energy & position features

° Graph is an event
Graph-level predictions: Jet tagging (e.g. OQu &
Gouskos 2019)

° Particles are nodes with 4-momentum

° Graph is a jet
Hybrid: Particle flow (e.g. Kieseler 2020) - assign
hits to objects and predict properties of objects
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https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/2002.03605

ADVANTAGES OF GRAPHS

® No assumed regularity of node positions:
®  CNNis rely on grid-layout of pixels, but what if you detector has an irregular layout?
®  Node features allow us to specify node position (or learn a latent-space embedding)

® No assumed ordering of nodes:
®  DNNs, CNNs, & RNNs require inputs to be ordered somehow
®  For some domains ordering is intuitive (start at top-left of image, read text in word-order, etc.)

¢  Butin HEP recorded particles exist simultaneously but we must order them by a criterion and
hope it is optimal

®  Graphs also present all nodes simultaneously with no sense of priority

®  N.B.For graph-level predictions, care must be take to retain order-invariance (see next slide)

Graphs are flexible: nodes and edges can be created or destroyed



SIMPLE APPROACH TO GRAPHS

¢  Take a single DNN and apply it to every
node in the graph:

®  Inputs are node features ‘ ‘

®  DNN weights are shared like a CNN
®  Provides set of predictions per node ‘

®  Node-level tasks: ‘

The DNN predictions are the target

features for the node N;:F,=3,F =-07,..

' Apply same DNN to
every node

N:P,=02,p, = 0.l,..




SIMPLE APPROACH TO GRAPHS

Graph-level predictions:

Aggregate the node predictions, either:

¢ Take the average/maximum of every

node prediction - retains order
invariance but loses information
Reshape node predictions - requires

nodes to be ordered but retains
information

Feed aggregate features through second
DNN to get graph-level prediction

Ny P,=-0.5p, =08,..

N,:P,=02,p, =0.,..

Average nodes Flatten nodes
<py> =-03,<p>=0.2,.. Poo=-0-5.p,,=0.8,...p, ;=0.2,p | =0.1, ...

G,:P,=0.7,p, =-04,.. G, P,=0.7,p, =-04,..



GRAPH-NETS

® The simple approach works but ignores the connections to other nodes in

the graph

® A Graph Neural Network still provides predictions per node, but also has

a mechanism to consider the features of the other nodes when predicting
each node

® The mechanism (message passing) varies according to GNN architecture
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INTERACTION NET

Originally for physical simulations
(Battaglia et al. 2016)
®  Applied to HEP by Moreno et al. 2019

|. Combine features along edges

®  Implemented by fixed sending & receiving
matrices

2.Apply DNN to learn internal
transformation for each node

3.Apply transformation to each node and
concat with original features

4.Apply 2nd DNN to learn output
features per node
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P: # of features

Ne = No(No-1): # of edges

De: size of internal representations

Do: size of post-interaction internal representation

expressed as
dense neural
networks
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https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1908.05318

LORENTZ-BOOST NETWORK

Lorentz Boost Network

° Erdmann et al., 20 | 8 Input vectors Particles Boosted particles Features
®  HEP-specific arch for learned feature extraction from — Neural Network
4-momenta
° Creates new boosted particles by learning both new K
particles and rest-frames by combining input particles ~\ T
° Particles & restframes are linear combinations of 7
inputs, with learnable coefficients = \
° Computes pre-specified high-level features using [ : - [
(combinations of) the boosted particles tiakis ' s rirria.
weights 005s1s extraction
e Lorentz boost requires inputs are physical (2:M-N)
®  Reduces impact of HL-feature selection/specification Nx4 2- (M%) Mx4 Fx1
by providing means to learn optimal particles for the
chosen featu res. : : Input vectors Particles Boosted particles Features
° LUMIN implementation offers a further relaxation by )
replacing the fixed feature extraction with a pair of - i .
= p+y,
cos(6%) = M
Puv " Pwe

DNNs:

e One extracts N features each particle

° The other extracts M features from every
combination of particle pairs SR
Rest frames
S w= uty,
t=b+uty, 12

Lorentz
boosts

Trainable
weights
(2:-M-N)



https://arxiv.org/abs/1812.09722

DEALING WITH LARGE GRAPHS

® Typical problem with graphs: slow to evaluate with many nodes

® Greedy approach: prediction of a single node depends on all connected
nodes + self

Heuristic approach: learn which other nodes are actually required



GRAVNET

Quasim et al., 2019

A) Initial DNN learns new features (F, )+
latent-space coords (S) per node based on node
features (FIN)

B) Graph constructed by only connecting each

node to its k-nearest neighbours in latent-space
(Euclidean separation in S)

D) Node features (fii) “seen” by a given node are:

®  Weighted by a potential according to Euclidean
distance, e.g. exp(-1 O*djkz) (F iki)
¢ Aggregated by order-invariant functions, e.g.
average & maximum (f7,)
° The neighbour-features are then concatenated
with the original features of the node
E) A second DNN computes the output features
per node based on the F & f"k‘) features
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https://arxiv.org/abs/1902.07987
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®  Binary classification of jets (0=QCD,
|=Top)
®  Inputs are 4-momenta of Ist 200 sub-jets
(pt ordered)

° Full details

®  For GNN task:

®  Sub-jets are nodes
®  4-momenta are features
Jets are graphs

Graph-level classification problem

TOP TAGGING

AUC | Acc 1/€ep (e =0.3) #Param
single mean median

CNN [25] 0.981 | 0.930 914+14 995+15 975+18 610k
ResNeXt [40] 0.984 | 0.936 | 1122+47 1270+28  1286=+31 1.46M
TopoDNN [27] 0.972 | 0.916 295+5 382+ 5 378+ 8 59k
Multi-body N-subjettiness 6 [33] | 0.979 | 0.922 792+18 798+12 808+13 57k
Multi-body N-subjettiness 8 [33] | 0.981 | 0.929 867+15 918+20 926+18 58k
TreeNiN [52] 0.982 | 0.933 | 102511 1202+23 1188%24 34k
P-CNN 0.980 | 0.930 732+24 845%13 834+14 348k
ParticleNet [56] 0.985 | 0.938 | 1298+46  1412+45 1393%41 498k
LBN [28] 0.981 | 0.931 83617 859+67 966+20 705k
LoLa [31] 0.980 | 0.929 722+17 768+11 76511 127k
LDA [63] 0.955 | 0.892 151+0.4 151.5+0.5 151.7+0.4 184k
Energy Flow Polynomials [30] 0.980 | 0.932 384 1k
Energy Flow Network [32] 0.979 | 0.927 633+31 729+13 726+11 82k
Particle Flow Network [32] 0.982 | 0.932 891+18 1063+21  1052+29 82k
GoaT | 0.985 | 0.939 | 1368+140 15494208 | 35k
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https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit

RUNNING THE TUTORIAL

® Dedicated software repo:
https://github.com/GilesStrong/workshop_LIP_ GNN

® Either run-locally, or use Google Colab:

https://colab.research.google.com/github/GilesStrong/workshop_LIP_GN
N/blob/main/GravNet_for_top_tagging.ipynb

® Subsampled, preprocessed data available from
https://cernbox.cern.ch/index.php/s/YsKrkmIMérBcnfG/download

Link will be deactivated on 18/07/21 - afterwards use official source (notebook
contains the preprocessing code, but the full dataset is large)


https://github.com/GilesStrong/workshop_LIP_GNN
https://colab.research.google.com/github/GilesStrong/workshop_LIP_GNN/blob/main/GravNet_for_top_tagging.ipynb
https://colab.research.google.com/github/GilesStrong/workshop_LIP_GNN/blob/main/GravNet_for_top_tagging.ipynb
https://cernbox.cern.ch/index.php/s/YsKrkmIM6rBcnfG/download
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HIGGS ML KAGGLE

ATLAS 2012 MC full simulation with
Geant 4

Signal: Higgs to di-tau
Backgrounds: Z— 77, tt,and W decay

Events selected for the semi-leptonic
channel: 7z — (e | ©) + th

250,000 labelled events for training,
550,000 unlabelled events for testing

31 features:
[ ]
two jets (pT ordered)

High-level features: angles, invariant
masses, fitted di-tau mass (MMC), et
cetera

3-momenta of main final-states and upto

Solutions must predict signal or
background for each test event

Solutions ranked via their Approximate
Median Significance

Quick, accurate, analytical approximation
of full discovery significance

s = sum of weights of true positive events
(signal events determined by the solution
to be signal)

b = weights of false positive events
(backgrounds events determined by the
solution to be signal)

br = constant term (set to 10 for the
challenge)

AMS = /2 (s+ b+ by) log ((1 -

b

s "
+ by S))



RUNNING THE TUTORIAL

¢  Colab link:

https://colab.research.google.com/drive/ | QQyGakVWR{FIpALV2dYpgOM3
X7bgjxh4v?usp=sharing



https://colab.research.google.com/drive/1QQyGakWRfFIpALV2dYpq0M3X7bgjxh4v?usp=sharing
https://colab.research.google.com/drive/1QQyGakWRfFIpALV2dYpq0M3X7bgjxh4v?usp=sharing

FURTHER READING




ASSORTED FURTHER READING

® GNN tutorial + explanation

® Should Graph Neural Networks Use Features, Edges, Or Both?

¢ JEDI-net
® GravNet

® (Object condensation

¢ Attention is all you need

Point Cloud Transformers



https://colab.research.google.com/github/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/tutorial7/GNN_overview.ipynb
https://arxiv.org/abs/2103.06857
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/2002.03605
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://link.springer.com/article/10.1007/s41095-021-0229-5

