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OVERVIEW

1. Graph data and tasks

2. Graph examples in HEP

3. A few architectures

4. Practical tutorial
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GRAPHS

• A graph consists of:
• Nodes/Vertices, each with a set of 

features
• Edges which connect vertices together 

and imply an interaction between the pair 
of nodes

• Edges can be unidirectional and not all 
possible edges have to exist

• Twitter example:
• People (nodes) with tweets (features) 

connected by both uni- and bi-directional 
edges (following & mutual follows)

• Not everyone is connected to everyone 
else (some edges don’t exist)
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N0: F0 = 1, F1 = 0.2, ...

N1: F0 = 3, F1 = -0.7, ...



GRAPHS

• Can represent graph as:
• A matrix of nodes with features (N, F) or 

(F, N)
• An (N,N) adjacency matrix of connections 

between nodes
• Nodes are also connected to themselves
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N0: F0 = 1, F1 = 0.2, ...

N1: F0 = 3, F1 = -0.7, ...
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GRAPH-TASKS

• Three general task categories

• Node-level predictions:
• Given a graph, predict the values of 

unknown features for every node

• Edge-level predictions:
• Given a set of nodes, predict whether 

each possible edge-connection exists

• Graph-level predictions:
• Given a graph, predict the values of 

unknown features for the entire graph
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N0: F0 = 1, F1 = 0.2, …
Target0 = ??

N1: F0 = 3, F1 = -0.7, …
Target0 = ??

G0: Target0 = ??



HEP EXAMPLES

• Generally in HEP, assume every node is connected 
to every other node

• All edges exist and are bi-directional

• Node-level predictions: Assign detector hits to 
different showers (e.g. Qasim et al. 2019, right)

• Hits are nodes with energy & position features
• Graph is an event

• Graph-level predictions: Jet tagging (e.g. Qu & 
Gouskos 2019)

• Particles are nodes with 4-momentum
• Graph is a jet

• Hybrid: Particle flow (e.g. Kieseler 2020) - assign 
hits to objects and predict properties of objects
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https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/2002.03605


ADVANTAGES OF GRAPHS

• No assumed regularity of node positions:
• CNNs rely on grid-layout of pixels, but what if you detector has an irregular layout?
• Node features allow us to specify node position (or learn a latent-space embedding)

• No assumed ordering of nodes:
• DNNs, CNNs, & RNNs require inputs to be ordered somehow
• For some domains ordering is intuitive (start at top-left of image, read text in word-order, etc.)
• But in HEP recorded particles exist simultaneously but we must order them by a criterion and 

hope it is optimal
• Graphs also present all nodes simultaneously with no sense of priority
• N.B. For graph-level predictions, care must be take to retain order-invariance (see next slide)

• Graphs are flexible: nodes and edges can be created or destroyed
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SIMPLE APPROACH TO GRAPHS

• Take a single DNN and apply it to every 
node in the graph:

• Inputs are node features

• DNN weights are shared like a CNN

• Provides set of predictions per node

• Node-level tasks:
• The DNN predictions are the target 

features for the node
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N1: F0 = 3, F1 = -0.7, ...

N1: P0 = 0.2, p1 = 0.1, ...

DNN Apply same DNN to 
every node



SIMPLE APPROACH TO GRAPHS

• Graph-level predictions:
• Aggregate the node predictions, either:

• Take the average/maximum of every 
node prediction - retains order 
invariance but loses information

• Reshape node predictions - requires 
nodes to be ordered but retains 
information

• Feed aggregate features through second 
DNN to get graph-level prediction
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N1: P0 = 0.2, p1 = 0.1, ...

N0: P0 = -0.5, p1 = 0.8, ...

<p0> = -0.3, <p1> = 0.2, ...

G0: P0 = 0.7, p1 = -0.4, ...

DNN

Average nodes
p0,0=-0.5,p0,1=0.8,...,p1,0=0.2,p1,1=0.1, ...

G0: P0 = 0.7, p1 = -0.4, ...

DNN

Flatten nodes



GRAPH-NETS

• The simple approach works but ignores the connections to other nodes in 
the graph

• A Graph Neural Network still provides predictions per node, but also has 
a mechanism to consider the features of the other nodes when predicting 
each node
• The mechanism (message passing) varies according to GNN architecture
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INTERACTION NET

• Originally for physical simulations 
(Battaglia et al. 2016)

• Applied to HEP by Moreno et al. 2019

• 1. Combine features along edges
• Implemented by fixed sending & receiving 

matrices

• 2. Apply DNN to learn internal 
transformation for each node

• 3. Apply transformation to each node and 
concat with original features

• 4. Apply 2nd DNN to learn output 
features per node

11

1.
2.

3.

4.

https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1908.05318


LORENTZ-BOOST NETWORK

• Erdmann et al., 2018
• HEP-specific arch for learned feature extraction from 

4-momenta
• Creates new boosted particles by learning both new 

particles and rest-frames by combining input particles
• Particles & restframes are linear combinations of 

inputs, with learnable coefficients
• Computes pre-specified high-level features using 

(combinations of) the boosted particles
• Lorentz boost requires inputs are physical

• Reduces impact of HL-feature selection/specification 
by providing means to learn optimal particles for the 
chosen features

• LUMIN implementation offers a further relaxation by 
replacing the fixed feature extraction with a pair of 
DNNs:

• One extracts N features each particle
• The other extracts M features from every 

combination of particle pairs
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https://arxiv.org/abs/1812.09722


DEALING WITH LARGE GRAPHS

• Typical problem with graphs: slow to evaluate with many nodes

• Greedy approach: prediction of a single node depends on all connected 
nodes + self

• Heuristic approach: learn which other nodes are actually required 
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GRAVNET

• Quasim et al., 2019
• A) Initial DNN learns new features (Flr)+ 

latent-space coords (S) per node based on node 
features (FIN)

• B) Graph constructed by only connecting each 
node to its k-nearest neighbours in latent-space 
(Euclidean separation in S)

• D) Node features (fj
i) “seen” by a given node are:

• Weighted by a potential according to Euclidean 
distance, e.g. exp(-10*djk

2) (f~jk
i)

• Aggregated by order-invariant functions, e.g. 
average & maximum (f~k

i)
• The neighbour-features are then concatenated 

with the original features of the node
• E) A second DNN computes the output features 

per node based on the FIN & f~k
i) features
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https://arxiv.org/abs/1902.07987


PRACTICAL TUTORIAL - GILES
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TOP TAGGING

• Binary classification of jets (0=QCD, 
1=Top)

• Inputs are 4-momenta of 1st 200 sub-jets 
(pt ordered)

• Full details

• For GNN task:
• Sub-jets are nodes
• 4-momenta are features
• Jets are graphs
• Graph-level classification problem
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https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit


RUNNING THE TUTORIAL

• Dedicated software repo: 
https://github.com/GilesStrong/workshop_LIP_GNN

• Either run-locally, or use Google Colab: 
https://colab.research.google.com/github/GilesStrong/workshop_LIP_GN
N/blob/main/GravNet_for_top_tagging.ipynb

• Subsampled, preprocessed data available from 
https://cernbox.cern.ch/index.php/s/YsKrkmIM6rBcnfG/download 
• Link will be deactivated on 18/07/21 - afterwards use official source (notebook 

contains the preprocessing code, but the full dataset is large) 
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https://github.com/GilesStrong/workshop_LIP_GNN
https://colab.research.google.com/github/GilesStrong/workshop_LIP_GNN/blob/main/GravNet_for_top_tagging.ipynb
https://colab.research.google.com/github/GilesStrong/workshop_LIP_GNN/blob/main/GravNet_for_top_tagging.ipynb
https://cernbox.cern.ch/index.php/s/YsKrkmIM6rBcnfG/download


PRACTICAL TUTORIAL - RUTE
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HIGGS ML KAGGLE

• ATLAS 2012 MC full simulation with 
Geant 4

• Signal: Higgs to di-tau
• Backgrounds: Z→ 𝜏𝜏, tt, and W decay
• Events selected for the semi-leptonic 

channel: 𝜏𝜏 → (e | 𝜇) + 𝜏h
• 250,000 labelled events for training, 

550,000 unlabelled events for testing
• 31 features:

• 3-momenta of main final-states and upto 
two jets (pT ordered)

• High-level features: angles, invariant 
masses, fitted di-tau mass (MMC), et 
cetera
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• Solutions must predict signal or 
background for each test event

• Solutions ranked via their Approximate 
Median Significance

• Quick, accurate, analytical approximation 
of full discovery significance

• s = sum of weights of true positive events 
(signal events determined by the solution 
to be signal)

• b = weights of false positive events 
(backgrounds events determined by the 
solution to be signal)

• br = constant term (set to 10 for the 
challenge)



RUNNING THE TUTORIAL

• Colab link: 
https://colab.research.google.com/drive/1QQyGakWRfFIpALV2dYpq0M3
X7bgjxh4v?usp=sharing
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https://colab.research.google.com/drive/1QQyGakWRfFIpALV2dYpq0M3X7bgjxh4v?usp=sharing
https://colab.research.google.com/drive/1QQyGakWRfFIpALV2dYpq0M3X7bgjxh4v?usp=sharing


FURTHER READING
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ASSORTED FURTHER READING

• GNN tutorial + explanation 

• Should Graph Neural Networks Use Features, Edges, Or Both?

• JEDI-net

• GravNet

• Object condensation

• Attention is all you need

• Point Cloud Transformers
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https://colab.research.google.com/github/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/tutorial7/GNN_overview.ipynb
https://arxiv.org/abs/2103.06857
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/2002.03605
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://link.springer.com/article/10.1007/s41095-021-0229-5

