

GRAPH-NETS IN HEP: A PRACTICAL TUTORIAL

Rute Pedro & Giles Strong

LIP Big Data 1st thematic workshop, Online - 12/07/21

OVERVIEW

- . Graph data and tasks
- 2. Graph examples in HEP
- 3. A few architectures
- 4. Practical tutorial

GRAPHS

• A graph consists of:

- Nodes/Vertices, each with a set of features
- Edges which connect vertices together and imply an interaction between the pair of nodes
 - Edges can be unidirectional and not all possible edges have to exist
- Twitter example:
 - People (nodes) with tweets (features) connected by both uni- and bi-directional edges (following & mutual follows)
 - Not everyone is connected to everyone else (some edges don't exist)

GRAPHS

- Can represent graph as:
 - A matrix of nodes with features (N, F) or (F, N)
 - An (N,N) adjacency matrix of connections between nodes
 - Nodes are also connected to themselves

Send

Receive										
	1	1	0	0						
	0	1	1	1						
	0	1	1	1						
	0	0	1	1						

 $N_0: F_0 = 1, F_1 = 0.2, ...$ $N_1: F_0 = 3, F_1 = -0.7, ...$ Receive

GRAPH-TASKS

- Three general task categories
- Node-level predictions:
 - Given a graph, predict the values of unknown features for every node
- Edge-level predictions:
 - Given a set of nodes, predict whether each possible edge-connection exists
- Graph-level predictions:
 - Given a graph, predict the values of unknown features for the entire graph

G₀:Target₀ = ??

HEP EXAMPLES

- Generally in HEP, assume every node is connected to every other node
 - All edges exist and are bi-directional
- Node-level predictions: Assign detector hits to different showers (e.g. <u>Qasim et al. 2019</u>, right)
 - Hits are nodes with energy & position features
 - Graph is an event
- Graph-level predictions: Jet tagging (e.g. <u>Qu &</u> <u>Gouskos 2019</u>)
 - Particles are nodes with 4-momentum
 - Graph is a jet
- Hybrid: Particle flow (e.g. <u>Kieseler 2020</u>) assign hits to objects and predict properties of objects

ADVANTAGES OF GRAPHS

No assumed regularity of node positions:

- CNNs rely on grid-layout of pixels, but what if you detector has an irregular layout?
- Node features allow us to specify node position (or learn a latent-space embedding)
- No assumed ordering of nodes:
 - DNNs, CNNs, & RNNs require inputs to be ordered somehow
 - For some domains ordering is intuitive (start at top-left of image, read text in word-order, etc.)
 - But in HEP recorded particles *exist simultaneously* but we must order them by a criterion and hope it is optimal
 - Graphs also present all nodes simultaneously with no sense of priority
 - N.B. For graph-level predictions, care must be take to retain order-invariance (see next slide)
- Graphs are flexible: nodes and edges can be created or destroyed

SIMPLE APPROACH TO GRAPHS

- Take a single DNN and apply it to every node in the graph:
 - Inputs are node features
 - DNN weights are shared like a CNN
 - Provides set of predictions per node
- Node-level tasks:
 - The DNN predictions are the target features for the node

SIMPLE APPROACH TO GRAPHS

- Graph-level predictions:
 - Aggregate the node predictions, either:
 - Take the average/maximum of every node prediction - retains order invariance but loses information
 - Reshape node predictions requires nodes to be ordered but retains information
 - Feed aggregate features through second DNN to get graph-level prediction

GRAPH-NETS

- The simple approach works but ignores the connections to other nodes in the graph
- A Graph Neural Network still provides predictions per node, but also has a mechanism to consider the features of the other nodes when predicting each node
 - The mechanism (*message passing*) varies according to GNN architecture

INTERACTION NET

- Originally for physical simulations (<u>Battaglia et al. 2016</u>)
 - Applied to HEP by <u>Moreno et al. 2019</u>
- I. Combine features along edges
 - Implemented by fixed sending & receiving matrices
- 2. Apply DNN to learn internal transformation for each node
- 3. Apply transformation to each node and concat with original features
- 4. Apply 2nd DNN to learn output features per node

LORENTZ-BOOST NETWORK

• Erdmann et al., 2018

• HEP-specific arch for learned feature extraction from 4-momenta

- Creates new boosted particles by learning both new particles and rest-frames by combining input particles
 - Particles & restframes are linear combinations of inputs, with learnable coefficients
- Computes pre-specified high-level features using (combinations of) the boosted particles
 - Lorentz boost requires inputs are physical
- Reduces impact of HL-feature selection/specification by providing means to learn optimal particles for the chosen features
 - LUMIN implementation offers a further relaxation by replacing the fixed feature extraction with a pair of DNNs:
 - One extracts N features each particle
 - The other extracts M features from every combination of particle pairs

DEALING WITH LARGE GRAPHS

- Typical problem with graphs: slow to evaluate with many nodes
- Greedy approach: prediction of a single node depends on all connected nodes + self
- Heuristic approach: learn which other nodes are actually required

GRAVNET

Quasim et al., 2019

- A) Initial DNN learns new features (F_{Ir})+ latent-space coords (S) per node based on node features (F_{IN})
- B) Graph constructed by only connecting each node to its *k*-nearest neighbours in latent-space (Euclidean separation in S)
- D) Node features (fⁱ_i) "seen" by a given node are:
 - Weighted by a potential according to Euclidean distance, e.g. exp(-10*d_{ik}²) (f_{ik}ⁱ)
 - Aggregated by order-invariant functions, e.g. average & maximum (f_{μ})
 - The neighbour-features are then concatenated with the original features of the node
- E) A second DNN computes the output features per node based on the $F_{IN} \& f_k^{-i}$ features

PRACTICAL TUTORIAL - GILES

TOP TAGGING

- Binary classification of jets (0=QCD, I=Top)
 - Inputs are 4-momenta of 1st 200 sub-jets (p_r ordered)
 - Full details
- For GNN task:
 - Sub-jets are nodes
 - 4-momenta are features
 - Jets are graphs
 - Graph-level classification problem

	AUC	Acc	$1/\epsilon_B \ (\epsilon_S = 0.3)$		#Param	
			single	mean	median	
CNN [25]	0.981	0.930	914±14	995±15	975±18	610k
ResNeXt [40]	0.984	0.936	1122±47	1270 ± 28	1286±31	1.46M
TopoDNN [27]	0.972	0.916	295±5	382± 5	378 ± 8	59k
Multi-body N-subjettiness 6 [33]	0.979	0.922	792±18	798±12	808±13	57k
Multi-body N-subjettiness 8 [33]	0.981	0.929	867±15	918±20	926±18	58k
TreeNiN [52]	0.982	0.933	1025±11	1202 ± 23	1188 ± 24	34k
P-CNN	0.980	0.930	732±24	845±13	834±14	348k
ParticleNet [56]	0.985	0.938	1298±46	1412 ± 45	1393 ± 41	498k
LBN [28]	0.981	0.931	836±17	859±67	966±20	705k
LoLa [31]	0.980	0.929	722±17	768±11	765±11	127k
LDA [63]	0.955	0.892	151±0.4	151.5 ± 0.5	151.7±0.4	184k
Energy Flow Polynomials [30]	0.980	0.932	384			1k
Energy Flow Network [32]	0.979	0.927	633±31	729±13	726 ± 11	82k
Particle Flow Network [32]	0.982	0.932	891±18	1063 ± 21	1052±29	82k
GoaT	0.985	0.939	1368±140		1549±208	35k

RUNNING THE TUTORIAL

- Dedicated software repo: <u>https://github.com/GilesStrong/workshop_LIP_GNN</u>
- Either run-locally, or use Google Colab: <u>https://colab.research.google.com/github/GilesStrong/workshop_LIP_GN_N/blob/main/GravNet_for_top_tagging.ipynb</u>
- Subsampled, preprocessed data available from <u>https://cernbox.cern.ch/index.php/s/YsKrkmIM6rBcnfG/download</u>
 - Link will be deactivated on 18/07/21 afterwards use official source (notebook contains the preprocessing code, but the full dataset is large)

PRACTICAL TUTORIAL - RUTE

HIGGS ML KAGGLE

- ATLAS 2012 MC full simulation with Geant 4
- Signal: Higgs to di-tau
- Backgrounds: $Z \rightarrow \tau \tau$, tt, and W decay
- Events selected for the semi-leptonic channel: $\tau \tau \rightarrow (e \mid \mu) + \tau h$
- 250,000 labelled events for training, 550,000 unlabelled events for testing
- 31 features:
 - 3-momenta of main final-states and upto two jets (pT ordered)
 - High-level features: angles, invariant masses, fitted di-tau mass (MMC), et cetera

- Solutions must predict signal or background for each test event
 - Solutions ranked via their Approximate Median Significance
 - Quick, accurate, analytical approximation of full discovery significance
 - s = sum of weights of true positive events (signal events determined by the solution to be signal)
 - b = weights of false positive events
 (backgrounds events determined by the solution to be signal)
 - br = constant term (set to 10 for the challenge)

AMS =
$$\sqrt{2(s+b+b_r)\log\left(\left(1+\frac{s}{b+b_r}-s\right)\right)}$$

RUNNING THE TUTORIAL

Colab link:

https://colab.research.google.com/drive/IQQyGakWRfFlpALV2dYpq0M3 X7bgjxh4v?usp=sharing

FURTHER READING

ASSORTED FURTHER READING

- <u>GNN tutorial + explanation</u>
- Should Graph Neural Networks Use Features, Edges, Or Both?
- JEDI-net
- GravNet
- Object condensation
- Attention is all you need
- Point Cloud Transformers