MuTom analysis

strips \#0 (\#4)

corepix top \#1 (\#3)

corepix middle
\#2 (\#2)

- From November 2020, the trigger was set to:
- coincidence in two corepix planes:

1\&2 | 2\&3 | 1\&3

- only in the corepix area

corepix bottom \#3 (\#1)

Determination of each pad efficiency to vertical muons in each corepix

- Taking into account if there are misalignments

- For planes 1 and 3, the correction from geometrical factors is bigger

Efficiency determination is sensitive to small shifts in the planes

- In the analysis, the planes were first assumed to be aligned
- Precise plane position measurements revealed small misalignments of up to $10 \mathrm{~mm} \rightarrow$ all the estimated efficiencies increase up to 4% after updating the geometrical factor (computed from simulation)
- Status:
- Aug 2020 - Mar 2021: precise planes position information
- Apr 2021: planes were aligned
- To evaluate: systematic uncertainty on the efficiency given the uncertainty on the measured positions

Efficiency to vertical muons determined for every corepix pad

Plane 1

Vertical efficiency plane $1=83.866337 \%$

Plane 2

Vertical efficiency plane $2=79.776933 \%$

Plane 3
Vertical efficiency plane $3=84.658986 \%$

- Line patterns present in the three planes: higher efficiency in the upper, central and lower lines
- Central column in the three planes: smaller efficiency

Correlation between the charge and the efficiency of a pad

- Why do the charge distributions differ by pad?
- Electronics effect: uncalibrated?
- Detector effect: cross-talk from outer pads, cables or physical volume feature?

Approach: change the MAROC configurations:

- adjust the pad gains \rightarrow achieve uniform efficiencies?

Nov-Dez 2020

Area between pads helps to understand the vertical rates

- When considering the dead area, effective pad area increases 30%, vertical pixel acceptance increases $65 \% \rightarrow$ excess goes down to 15%

Jan-Mar 2021

- Jan-Mar 2021:
- for each plane, find the pad with higher charge median
- increase the gains of the remaining pads to the reference median

Vertical events planes 123 per line

- As expected, efficiencies go up in the three planes: 2\%, 1\%, 4\% respectively
- The uniformity improves, but the line patterns do not disappear
- Caveat: known bug and the applied gains not optimal

After adjusting the gains, the uniformity improves but the line patterns do not disappear

Jan-Mar 2021

- Number of events with multiple hits increases significantly

Interpretation: high gains lead to signal not contained in one pad, spreads to contiguous pads
\rightarrow may happen that the muon goes through one pad but the pad with maximum charge is a different one (and we are selecting this)

24 Apr - 14 May 2021

- Apr-May, 2021:
- try to achieve uniformity without previous effects of signal distribution by contiguous pads
- adjust the gains to optimal "low" gains: find the average of the medians from November data

Vertical efficiency plane $1=83.679081 \%$

Vertical efficiency plane 2 = 78.087269 \%

Vertical efficiency plane $3=83.416161 \%$

> After adjusting the gains, the uniformity improves but the line patterns do not disappear

- 15-29 May, 2021:
- set the gains outside the corepix to zero, to check if the big (and more noisy) pads are inducing signal in the corepix that creates the patterns - the line patterns do not disappear: the effect is not caused by electronics cross-talk from the outer pads
- Persistence of line patterns after adjusting gains points to something in the detector, instead of electronics?
- Moreover, features noticed:
- rate $_{\text {data }}>$ rate $_{\text {sim }}$
- $\varepsilon_{2}<\varepsilon_{1}, \varepsilon_{3}$

Can random coincidences help explain these?

$$
\begin{aligned}
& \epsilon_{2}=\frac{N_{123}}{k_{2} N_{13}} \longrightarrow \text { unaffected } \\
& \text { affected } \\
& \epsilon_{3}=\frac{N_{123}}{k_{3} N_{12}} \longrightarrow \begin{array}{c}
\text { less } \\
\text { affected: } \\
\mathbf{k}_{2} / \mathrm{k}_{3}=4 \\
\hline
\end{array} \\
& \text { rate } \propto \frac{N_{123}}{\epsilon_{1} \epsilon_{2} \epsilon_{3}}
\end{aligned}
$$

- Approach: to estimate the random coincidences rates from the self-trigger data and use it to correct the efficiencies (ongoing)
- May - June, 2021:
- self-trigger acquisition runs, that give information on the noise rates

Assuming the applied gains are not causing the effect...

- Self-trigger rates show the same line patterns
- rates dominated by background, not muons: the effect is not from the muon analysis
- Test with cables change
- the pattern followed the cable/detector lines, not the MAROC lines: the effect is in the cable/detector, not in the electronics
- The lines with higher background rates are the lines with lower efficiency
- Current working hypothesis: spacers are at the origin of the effect
- The position of the spacers is compatible with the position of the lines with lower efficiency

15	19	10	28	35	53	44
3	7	23	29	36	41	57
16	20	11	30	37	54	45
4	8	24	31	38	42	58
17	21	25	32	39	55	46
5	9	26	33	52	43	59
18	22	27	34	40	56	47

spacers in the gas volume

- The gas volume reduction due to the spacers dimensions (1 mm wide) implies a decrease of nearly 10% in the vertical muon rate
- Spacers are known to increase the self-trigger rate

