Machine Learning methods to measure the quantum numbers of the Higgs interaction to W bosons Supervisors: Inês Ochoa, Patrícia Muíño, Ricardo Barrué

João Moura Teixeira¹

¹Instituto Superior Técnico Engineering Physics

September 2021

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

The Motivation

- No evidence for new particles at the LHC yet
- Energy scale above LHC reach?
- Might still have visible effects in observables measurable at the LHC

Figure: Particles of the Standard Model

Effective Field Theory (EFT)

- Effective Field Theory (EFT) represents a possible approach for studying small deviations to the SM theory
- Basic principle: expand SM lagrangian with operators $O_i^{(d)}$ of dimension d > 4

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{c_i O_i^{(d)}}{\Lambda^{d-4}}$$
(1)

• In which:

 $-\Lambda =$ new high energy scale

 $-c_i$ = Wilson coefficients which represent the relative strength of each mass operator, $O_i^{(d)}$

• Main advantage of using EFT: model-independent approach

Charge-Parity (CP) transformations

- Process classification on when it comes to charge-parity:
 - CP-even process: keeps the signal
 - CP-odd process: changes the signal
- It is said that a CP-symmetry violation occured in an interaction when it isn't invariant

• The Higgs interactions predicted on the SM are classified as CP-even

HWW interaction

- HWW interaction is characterized as CP-even in the SM
- So, we will recur to BSM sources to measure CP-odd terms

Figure: An example of HWW interaction (in this case, the topology we will study)

• The only dimension-6 CP-odd operator in the HWW vertex is $\tilde{\mathcal{O}}_{HW}$

$$\tilde{\mathcal{O}}_{HW} = \frac{c_{\tilde{H}W}}{\Lambda^2} H^{\dagger} H \tilde{W}^{I}_{\mu\nu} W^{I\mu\nu} = \frac{c_{\tilde{H}W}}{\Lambda^2} H^{\dagger} H \epsilon_{\mu\nu\rho\sigma} W^{I\rho\sigma} W^{I\mu\nu}$$
(2)

- Main goal of this work:
 - Study different sets of kinematic observables
 - Use the Fisher information formalism to determine the combination of observables with largest sensitivity to $c_{\tilde{H}W}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

WH associated production

- Topology to study: associated WH production in the $W \longrightarrow l
 u$, $H \longrightarrow b ar{b}$ final state
 - the easiness to identify the isolated high-energy lepton which will make the triggering more efficient
 - the decay of the Higgs boson to a pair of b-quarks is the one with the highest branching ratio (BR \approx 58%)

- Main reducible backgrounds:
 - $t\bar{t}$ production in the semileptonic decay channel (left)
 - single top production in the s-channel (center)
 - associated production of a W boson and b-jets (right)

Results - I

- The variables related to the energy of the WH system are shifted to higher values
 - Expected due to BSM contributions
- The bosons' transverse momenta, p_T , have shifted distributions
- Observation: morphing_basis_vector_1 refers to a SM sample + CP-odd coupling

Figure: Transverse momentum of the Higgs boson, pT_-H [GeV]

Figure: Transverse momentum of the W boson, pT_-W [GeV]

- The transverse momentum distributions of quarks and leptons will also be shifted to higher values as:
 - the Higgs decays into a pair of b-quarks
 - the W boson decays into a lepton and a neutrino

Figure: Transverse momentum of a b-quark, pT_b1 [GeV]

Figure: Transverse momentum of a b-quark, pT_b2 [GeV]

Figure: Transverse momentum of the lepton, $pT_{-}I$ [GeV]

Results - III

• Angular observables such as $\cos \theta^*$, $\cos \delta^+$ and $\cos \delta^-$ are relevant as they can help to distinguish CP-odd and CP-even BSM signals

Another set of angular observables

- Definition of functions for new angular observables: Θ , ϕ and θ
 - $\Theta\equiv$ angle between the W boson and the beam axis
 - $\phi \equiv$ angle between the plane of production of the VH-system and the lepton-neutrino system plane of production
 - $\theta \equiv$ angle between the W boson and one of the leptons

Results - IV

- Results weren't quite encouraging
- Statistical fluctuations \sim height of each histogram bin \implies observables not sensitive enough

 However, the distribution for cos ⊖ led to some notorious differences between the SM and the morphing_basis_vector_1 samples • Distribution for $\cos \Theta$ with a higher peak around 0

From the results and histograms previously shown and discussed, one can conclude that the most sensitive variables are the transverse momentum of the W candidate, p_{T_W} , and the following angular observables: $\cos \theta^*$, $\cos \delta^+$, $\cos \delta^-$ and $\cos \Theta$.

These observables are candidates for optimal variables to constrain CP-odd operators which cause the observed shift on the transverse momentum distributions.

- The setup and sample generation tasks of this work are made using *Madminer*.
- The samples used were generated at LO in QCD with *Madgraph5_mC@NLO*
- The SM and BSM signal samples are generated using *SMEFTsim3* and the background samples with the default SM model.
- In order to reproduce the most relevant effects from detectors, one opted to smear the parton-level b-quark energies and E_T^{miss}
- The b-jet energies are smeared by a gaussian transfer function with width $\sigma_E/E = 0.1$