

Heavy Quarks as Probes of the Primordial Plasma

Henrique Legoinha, Maria Faria, Nuno Leonardo, Zhaozhong Shi

Tuesday , September 14, 2021

Introduction

Quark Gluon Plasma (QGP)

State of matter that occurs under extreme conditions of density and temperature

Heavy Ion Collisions

What we Want to Study

Study the hadronization process of quarks

Learn the effect of a quark-gluon plasma on the hadronization process

The Idea

Use **B mesons** that originate in **p-p** and **Pb-Pb** collisions to learn about the QGP

In **p-p** collisions **QGP** does **not form** (or, is negligible) In **Pb-Pb** collisions, a **big and hot QGP** occurs

⇒ Measure the production Cross Section of B-mesons in each type of collisions
⇒ Compare them (considering the difference in the number of nucleons involved)

$$R_{AA} \propto \frac{\left(\frac{d\sigma}{dp_T}\right)_{PbPb}}{\left(\frac{d\sigma}{dp_T}\right)_{pp}}$$

Current Work

Previously, Pb-Pb Cross Section was studied

Currently we are **working** on the **p-p Cross Section**

⇒ We are using **data** from **p-p collisions** from the **2017 LHC** run:

Center of mass energy of $\sqrt{s} = 5 \text{ TeV}$

Luminosity of L= 302.3 pb-1

Some Theory

High Energy Particle Collision

In a nucleon-nucleon collision many process occur:

Probing the Quark gluon Plasma

Among the new produced particles, **B-mesons** will form due to **hadronization of quarks** and can be used to learn about the **QGP** presence

B-mesons

The following three B-mesons states are good candidates for probing the plasma:

B⁺ (
$$\bar{b}u$$
)→ J/ψ K⁺ → μ⁺μ⁻ K⁺
B⁰_s ($\bar{b}s$)→ J/ψ φ → μ⁺μ⁻ K⁺K⁻
B⁰ ($\bar{b}d$)→ J/ψ K^{*0} → μ⁺μ⁻ K⁺π⁻

Use CMS (Compact Muon Solenoid) detector

detect and measure these final particles

Differential Cross Section

Extended Unbinned Maximum Likelihood

Data Analysis

Data Fitting

sPlot

Based on the likelihood fit to the B-meson mass and in the following statistical weights:

Sideband Subtraction

MC vs Data ComparisoN (P_T)

B⁺ Transverse Momentum and Rapidity

B⁺ Differential Yield vs P_T

$$\frac{d\sigma}{dp_T} = \frac{1}{\epsilon \ L \ B} \frac{dN_s}{dp_T}$$

B⁺ Differential Yield vs By

B⁺ Efficiency

$$\frac{d\sigma}{dp_T} = \frac{1}{\epsilon L B} \frac{dN_s}{dp_T}$$

$$\epsilon = rac{N_{after\ cuts}}{N_{before\ cuts}}$$

$$\Delta = \frac{\epsilon^1 - \epsilon^0}{\epsilon^0}$$

 ϵ^1 \Rightarrow with data/MC weights ϵ^0 \Rightarrow without data/MC weights

Differential Cross Sections

Next Steps

Improve the MC simulation for Bs and check the data sample

Measure the fragmentation fraction Bs/B⁺

Compare the p-p results to the Pb-Pb results

Conclusion

We have studied the production of B_{s}^{0} and B⁺ mesons at LHC using the CMS detector

Signal Yield (N_s) was extracted from data using the likelihood method.

Differential Signal Yield obtained as function of :	Transverse Momentum (p_T)
	Rapidity (By)
	Multiplicity

Detector efficiency was estimated using Monte Carlo simulations (and validated)

All the associated uncertainties were estimated

B⁺ Cross Section at $\sqrt{s} = 5$ TeV was measured as function of By and p_T

THE END

Thank you for your attention!

Any question ?

MC vs Data Comparisson

Data Fitting Validation

