

Novel jet algorithms to unveil the Quark-Gluon Plasma evolution

> Alexandre Monforte João Fernandes Lénea Luís

Supervisors: Liliana Apolinário, André Cordeiro

Introduction Quantum Chromodynamics

Standard Model of Elementary Particles

Basic Processes

Introduction

Parton Shower

Setup

$$m_{1}^{2} > m_{2}^{2} > m_{3}^{2}$$
$$k_{t1}^{2} > k_{t2}^{2} > k_{t3}^{2}$$
$$\theta_{1} > \theta_{2} > \theta_{3}$$

Sudakov factor

$$\Delta(t_1, t_2) = e^{-\frac{\alpha}{2\pi}C_R[ln^2(\frac{t_1}{t_{cut}}) - ln^2(\frac{t_2}{t_{cut}})]}$$

probability of emitting in time t_2 if the last splitting was in time t_1

$$\mathrm{d}P \propto \frac{\mathrm{d}z}{z} \frac{\mathrm{d}\theta}{\theta}$$

Equivalent scales:

- m² (mass)
- $z(1-z) m^2 \alpha k_T^2$ (transverse momentum)

 m^2

• $\frac{m^2}{z(1-z)} \alpha E^2 \theta^2$ (angle)

Results for Transverse Momentum (k_T²**) algorithm**

What is happening with my quark as it emits gluons?

Results Energy Decrease

Quark's energy before the emission

θ

Angle distribution between gluon and quark mother

Let's build a 2D visualization of the process... Lund planes!

What is happening to my quark as it emits gluons?

Results

Soft & Collinear Limit: (z << 1 & ϑ << 1)

 $\mathrm{d}P\propto\frac{\mathrm{d}z}{z}\frac{\mathrm{d}\theta}{\theta}$

Our results: strictly perturbative!

Results The Lund Plane

transverse momentum (k_t^2) ordering

transverse momentum (k_t^2) ordering

Results Trajectories in Lund's Plane

Trajectory in Lund's Plane for transverse momentum ordering

Results Trajectories in Lund's Plane

Results Trajectories in Lund's Plane

17

Conclusion

- Goal: understand QCD parton showers and how to use them in heavy-ion collisions
- Results:
 - Studied algorithms (m², angle, k²_t) have equivalent final distributions (as expected), but exact ordering is different
 - In pp collisions, these differences cannot be measured...
 - In heavy-ion collisions, different emissions will take place at a different QGP density (not shown)
 - Exploration avenue to better understand QCD parton showers!