Understanding Hadronization Timescales Using Jets

Diogo Miguel dos Santos Simões (diogo.s.simoes@tecnico.ulisboa.pt)

Nuno Olavo Gonçalves Mendes Madureira (nuno.olavo@tecnico.ulisboa.pt)

STAR Experiment at the Relativistic Heavy Ion Collider 2014-04-15 09:30:43 EDT Au+Au @ $\sqrt{s_{NN}}$ = 200 GeV Run Number / Event ID:15105019 / 204002 1

Introduction

Partons Parton Showers Hadronization Splittings

- **Partons** are <u>quarks</u> (q) or <u>gluons</u> (g)
- Scattered partons originate parton showers
- The possible **splittings** are:

• Parton showers ends with hadronization

Introduction

• A jet is the result of a set of rules for how to group the detected particles together

• The grouping of a pair of particles is called a **clustering**

 Clustering is done by computers by using jet algorithms Jet Clustering Jet Algorithms

Introduction

Jet Algorithms

Hard particles – particles with high energy Soft particles – particles with low energy

Motivation

Timescale of Hadronization

Hadronization marks the transition of Quantum Chromodynamics(QCD) from its <u>perturbative regime</u> to its <u>non-perturbative regime</u>

We are interested in understanding if the **jet formation time** can be related to the <u>timescale</u> of the hadronization process

Simulations and Conditions

Center of mass energies Jet transverse momentum bins

- **PYTHIA 8.2** \rightarrow generate the events (pp collisions)
- FastJet \rightarrow find the jets produced in each event
- **ROOT** \rightarrow plot the jet substructure variables
- Initial clustering: **anti-kt algorithm**, R=0.6
- Reclustering: Cambridge/Aachen (C/A) algorithm, R=1

Vs Energies:

✤ 200 GeV (typical RHIC)
✤ 5 TeV (typical LHC)
✤ 14 TeV (extreme LHC)

- We employ the **SoftDrop algorithm** to the jet after being reclustered with the C/A algorithm
- The SoftDrop algorithm **de-clusters** the jet, meaning it splits the jet into two **subjets**
- The subjets are submited to the **SoftDrop criterion**:

$$\frac{\min\left(p_{T1}, p_{T2}\right)}{p_{T1} + p_{T2}} > 0.1$$

 $\mathbf{p_{T\,1}} \rightarrow \text{transverse momentum of one subjet}$ $\mathbf{p_{T\,2}} \rightarrow \text{transverse momentum of the other}$

• If the subjets don't pass this criterion, the hard subjet is taken as the full jet and the process is repeated until two suitable candidates are found

Formation Time

- The two subjets found using SoftDrop are then used to calculate de formation time (τ_F)
- The **formation time** represents the time a parton takes to split into two, and for these two new particles to behave independently
- It's calculate using the formula:

$$\tau_{form} \approx \frac{1}{2 E \, z (1-z) (1-\cos\theta_{12})}$$

- $\mathbf{E} \rightarrow \text{jet energy}$
- $z \rightarrow$ jet momentum fraction
- $\boldsymbol{\theta_{12}} \rightarrow$ angle between sub-jets or jet particles

Jet Formation Time

- Formation time calculated using the first pair of subjets that pass the SoftDrop criterion
 - This is called the $\tau_{\rm form}$ of the ${\bf 1^{st}}$. SoftDropemission
 - The simulations were run for 200 GeV pp-collisions and for jets with 15 $< p_T < 20 \text{ GeV/c}$

Jet Formation Time

Formation Time

- Same variables being plotted: $\tau_{\rm form}$ of the 1st SoftDrop emission
- Look at different center of mass energies

Observation:
 Larger √s ⇒ Smaller τ_{form}

Particle Distribution Functions (PDFs)

Proton PDFs $xf^p(x,Q^2)$ 1.0 NNPDF3.1 0.8g/100.60.4 $Q^2 = 100 \text{ GeV}^2$ 0.2 0.0 $\bar{1} x$ 10^{-3} 10^{-2} 10^{-1} 10^{-4} 10^{-5}

PDFs Bjorken x

Bjorken x:

 $\mathbf{p}_{T} \rightarrow$ jet transverse momentum $\mathbf{Vs} \rightarrow$ CM collision energy

Fixing the p_T ,

- Smaller $Vs \Rightarrow Larger x \Rightarrow More quark-initiated jets$
- Larger $\forall s \Rightarrow$ Smaller $x \Rightarrow$ More gluon-initiated jets

Jet Formation Time

Formation Time

Conclusion:

Since:

Larger $Vs \Rightarrow$ Smaller τ_{form}

Larger $Vs \Rightarrow$ More gluon-initiated jets

one concludes that

 \Rightarrow Gluons likely radiate more

Number of splits

Average τ_{f} [fm/c]

- Looking at just one value of Vs and one **p**_T range
- We can observe how the formation time evolves as we go through the declustering tree

Observation: •

As the number of splits increases, so does the formation time

τ_F using leading charged particles

Formation Time

Formation Time

Conclusions

Recall: The formation time is an observable that exploits the jet clustering algorithm to study the parton shower along its time axis

- From looking at the τ_{form} for collisions with different Vs, we conclude that gluon splittings occur quicker, on average, than the quark splitting
- From going along the sequential splits of a parton shower, we conclude that the average value of the formation time increases along the parton shower
- From looking at the τform calculated using subjets and calculated using the leading particles, we conclude that τform can hint at the transition from the perturbative to the non-perturbative QCD. We'll explore this in future work.

Our thanks to...

Our supervisors:

Dr. Liliana Apolinário Dr. Raghav Kunnawalkam

We hope you enjoyed it!

Any questions?