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Why?
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SHiP

• Heavier particles require
greater energies

• Improve Experiments
• Build New Ones
• (not so soon)

• Very weak interactions (weak couplings)
• Very rare events
• Greater collisions intensity -> (more data)
• (we can do it☺)



The experiment
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• Shielding reduces background noise
• Straw trackers track particles paths
• Masses, momentums and other

properties can be indirectly measured
• Timing Detectors with LIP technology



LIP’s Timing Detector (TD) 
based on MRPC’s  
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full size TD implementation 
prototype(1.8 𝑚2)

Schematic 
Representation of an 

RPC

• Composed by 2 6-gap RPC’s
• The field test results yielded:

✓ Great Efficiency: over 
95%

✓ Good time precision: 
under 100 ps



Heavy Neutral Leptons
Parameter spaces of the 

different HNL models 

• Hypothetical massive neutrino-like particles
• Do not couple to any Standard Model forces
• Could explain Baryon Asymmetry, neutrino mass and oscillation.
• Also a candidate for Dark Matter
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Neutralinos

• Proposed electrically neutral sfermion of the Minimal 
Supersymmetric Standard Model, superpartner to the Standard 
Model neutrino

• Truly neutral particle
• One of the candidates for Dark Matter

Parameter space of Neutralinos 
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Dark Photon

Production
• Hypothetical hidden sector particle
• Theorized to be a new gauge boson that 

would be a force carrier analogous to the SM 
photon but enabling interactions between 
dark matter particles

• Decay into (e+ e −),( µ +µ −) ,(τ + τ −) and 
other particles.

• Simplest model characterized by its mass and 
kinetic mixing parameter (effective coupling) 
with the regular photon

Decay
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Parameter Space



Our Work

Target 
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Processing
(ML)

Real data 
application

Where we come along If we do a good job and
nature is cool to us

• Good models
• Good selection efficiency
• Well trained neural networks
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Why Machine Learning?

• At the time of this presentation, the SHiP experiment 
is not yet fully built

• Data can be simulated using MonteCarlo methods 
and the FairShip framework (based on FairRoot)

• Neural Networks can be trained for use in real data.

• The use of machine learning can aid in finding 
complex patterns in the data when a large number of 
features are involved
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Decay into 𝝁±𝝁∓ pairs
One part of our work was to classify DP, HNL and Neutralinos based on their decay to 𝝁±𝝁∓.

Specific datasets of this decay were generated and given to us for classification.

Datasets

𝜇±𝜇∓
• DP
• HNL
• Neutralino
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Particle Decay

DP 𝜇+𝜇−

HNL 𝜈𝜇𝜇
+𝜇−

Neutralinos 𝜇−𝐾0 → 𝜇−𝜇+𝜈𝜇



Feature Selection
• For the multivariate analysis, a set of features are used to train the neural network and for the classification.
• Choosing the right features can make the diference between a good and bad model. Features serve as inputs for

the network to learn and classify datasets.
• Redundant features slow down the whole process as well as worsen the model and promote overfitting.

Feature Correlation Matrix with Heatmap
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All Features Provided

• Mother 
Total 
Momentum

• Mother 
Transverse 
Momentum 

• Mother 
Fraction of 
Transverse 
Momentum

• Opening 
Angle

• Decay Angle • Impact 
Parameter

• Daughter 1 
Total 
Momentum

• Daughter 1  
Transverse 
Momentum 

• Daughter 1  
Fraction of 
Transverse 
Momentum

• Daughter 2 
Total 
Momentum

• Daughter 2  
Transverse 
Momentum 

• Daughter 2 
Fraction of 
Transverse 
Momentum

• Decay X • Decay Y • Decay Z

• DOCA • Invariant Mass



Results

• Some road bumps were found along the
way:
➢ How to prevent overfitting?
➢ Feature selection -> which features are

better for training?
➢ Neutralino’s dataset was way smaller than

the others -> their weight in training was not
being enough to yield good classification.
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Particle Positives True
Positives

Model 
Sensitivity

Dark 
Photon

7545 7318 0.99959

HNL 28756 28756 0.99217

Neutralino 1298 1295 1.00000

Key: 1-HNL; 2-DP; 3-Neutralino



The mother particle candidates for 
detected𝝅±𝝁∓ pairs

In-code labeling Particle Type Decay mode and subsequent decays 

0 Neutralino 𝐾0𝜈𝜇 → 𝜋±𝜋∓ (detected as 𝜋±𝜇∓)

1 Dark Photon Decay to Hadrons (𝜋±𝜋∓ samples detected as 𝜋±𝜇∓)

2 Heavy Neutral Lepton 𝜋±𝜇∓

3 Heavy Neutral Lepton 𝜌±𝜇∓ → 𝜋0𝜋±𝜇∓
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Features and Feature Selection
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• Mother Total 
Momentum

• Mother Transverse 
Momentum 

• Mother Fraction of 
Transverse Momentum

• DOCA • Decay Z • Impact Parameter

• Daughter 1 Total 
Momentum

• Daughter 1  Transverse 
Momentum 

• Daughter 1  Fraction of 
Transverse Momentum

• Daughter 2 Total 
Momentum

• Daughter 2  Transverse 
Momentum 

• Daughter 2 Fraction of 
Transverse Momentum



Merit Figures

Decay
Mode

Area under 
dev ROC 

curve

Area under 
val ROC 
curve

Model
Sensitivity

(TP/Events)

(0) Neut 0.9552 0.9254 0.7414

(1) DP 0.9736 0.9668 0.7946

(2) 𝐻𝑁𝐿 (𝜋±𝜇∓) 0.9997 0.9967 0.9519

(3) 𝐻𝑁𝐿 (𝜌±𝜇∓) 0.9747 0.9529 0.8254

Roc curves for the decay modes presented
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Final Remarks for the 𝝅±𝝁∓ analysis

• There were no signs of overfitting in the selected model, with  similar efficiencies for both development and 
validation samples

• The differences in sensitivity displayed for different decay modes were in accordance with predictions, 

particularly the standout success of the 𝜋±𝜇∓ mode for HNLs (decay mode 2).
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Final Project Remarks

• Both of the models presented achieved the desired merit figures and would be fit for use in the discovery of
real particles .

• Even though the models employed different methods for selecting the features, the same ones prevailed in 
both , making the selection more trustworthy.

Final Questions?
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