lﬁ TECNICO
LISBOA

LabRC: Muon Telescope Acquisition

Final presentation

Ana Sofia Sousa
Francisco Rodrigues

Professor Fernando Barao

OUR EXPERIMENTAL
SETUP

O Server running 24/7 \

1 Accessible from any compﬁtep

through a ssh tunnel

O Interact through Graphics User
Interface or the console

[User can switch between live
streaming and/or saving the
events in the database

O Past events can be requested from
database

O Configurations saved for run
identification

NEEDS & GOALS

L Control the acquisition card (QN card)
L Control the PMT High Voltage

0 Handle events

O Store and/or stream events

[Store configurations used in each run
O User friendly

O Available anywhere (remote access to
the setup)

EVENT ACQUISITION SCHEME

muon

Detector

GRAPHICAL
USER INTERFACE

CLIENT PROGRAMS — GUI AND CONSOLE

GRAPHICAL USER INTERFACE

Window mode

LabRC: Muon Telescope Acquisition

= unknown
Live mode not connected
unknown

unknown
unknown

Connect: n unknown

Muon rate

LabRC: Muon Telescope Acquisition

connected - not running

TLLO=30L1=30 L2=20L3=30
DC

DC C0=13 C1=70 C2=91 C3=00
DT

DT TO=00T1=93 T2=3B T3=00
VG

TH TH=27.5
BA

BA 1520

Adjust this count 1520 to calibrate sensor in mBar.
mBar now reads = 1027.9 (use cmd 'SA when done)
TL

TLLO=30 L1=30 L2=20 L3=30
DC

DC C0=13 C1=70 C2=31 C3=00
DT

DT TO=00 T1=59 T2=9B T3=00
VG

VG=0

Console mode

WINDOW MODE — LIVE ACQUISITION

LabRC: Muon Telescope Acquisition

Muon rate

,,,,,
| I I |
Request data: i

DETECTOR CONFIGURATIONS

LIVE MODE DEMONSTRATION

P 1%

Welcome to LabRC!

rate as a function of time

MUON RATE

E O Export options include:
)

@ > png (as pictured)
L]

C

S > eps

E

"y » pdf

©

c

o

3

=

O Printing is also supported

_
12/09/202112/09/202112/09/202112/09/202112/09/202112/09/2021
18:55:50 18:56:00 18:56:10 18:56:20 18:56:30 18:56:40

Temperature as a function of time

TEMPERATURE

Q
Y
=3
©27,60
)
o
=
&

27,50

12/09/202112/09/202112/09/202112/09/202112/09/202112/09/2021
18:55:50 18:56:00 18:56:10 18:56:20 18:56:30 18:56:40

Pressure as a function of time (-1000 mbar)

PRESSURE

=
©
Kol
£
)
| .
=3
vl
LT}]
o)
| .
a
£
=

12/09/202112/09/202112/09/202112/09/202112/09/202112/09/2021
18:55:50 18:56:00 18:56:10 18:56:20 18:56:30 18:56:40

28 "object_type": "event”,
29 "values": [
JSON DATA OUTPUT se {
31 "timestamp": 1631472975,
_ _ 32 "nanoseconds": 343486931,
1 { 33 2ad™: O,
2 "object_type": "configuration", 34 "has r'ising_star‘t"' [
3 "values": [= -
a { 35 false,
5 "time_width": 145, 36 true,
6 "time_delay": 2, 37 false
7 "status_mode": O, 2
8 "status_time": 1, 38 false
9 "trigger": O, 39 s
10 "veto": O, 40 "edgeS": [
11 "thresholds": [
12 30, 41 L1,
13 30, 42 [
15 30
16 1, 44 36.75
17 "channel_states": [45 I
18 i &
2 46
- i [1,
20 o, 47 []
21] 48]

N N
w N
—
| -
B
()
-

N N
(S
—

nd
vl U
= ®
-

| W—

DATABASE MODE — RUN SELECTION

[<J (|

(< |

L
L)
L]
L]
L]
L)
L)

i
)

r
Run selection x

DATABASE MODE — RUN SELECTION

WHAT IS AN EVENT?

An event consists of an initial "trigger" timestamp, 4 booleans describing whether the input starts with a

rising or a falling edge, and 4 vectors of offsets corresponding to the rising and falling edges of each
channel.

This would be represented as:

Timestamp: [unix timestamp]
Rising-Start: {true, true, true, true}
(all inputs start with a RE)

Edges: {
{27, :) }, (channel 1)
{) I3 (channel 2)
{18, b (channel 3)
0 10 20 30 40 50 60 70 80 90 100 110 120 e ’ i (channel 4)
offset (ns) }
- rising edge

- falling edge

SERVER DETAILS

Server Threads

The server supports:

O Arbitrary number of clients

Serial Interface Command Handier O LIVE/DATABASE mode

Serialinterface [Serial Interface
Reader = . el T
kY Writer)

L Whitelists
Communication with
the clients (1 thread

per connection + 1 hreadNotificr ‘_ ' O Client limiting
listener thread)

std--list=Event= Farser & Storage |

DATABASE STRUCTURE

CONFIG_ID : int event

TIME_DELAY : int EVENT_ID : int
GATE_WIDTH : int = . s EVENT_TIMESTAMP : datetime

AL LA LU S— B EVENT TIMESTAMP NANO : int
C TRIGGER : int configCONFIG_ID : int

| THRESHOLDS : int[4]

event _entry

EVENT_ENTRY_ID : int
eventEVENT_ID : int
CHANNEL_NUMBER : int
NANOSECONDS TIME : float
RISING_OR_FALLING _EDGE : i

SERVER OUTPUT

The server outputs its logs and
debug information to stdout,
but by using a command such
as 'rotatelogs" we can pipe
that to a file.

j, Ircuser@labrc-lippad:~/LabRC/t X

[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12
[2021-09-12

18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:

26
26
26
26
26

U
:08.
:08.
108.
08
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:

12

13
13
13
13
13
13
13
13
13
13

15
15

-979
.368
13
113
13
113 5
113
1E
113 5
i3
.634
.634
.634
.634
.634
.634
.636
.647
.648
.648
14.
14.
- S1EE)
.339
18.
18.

585
597
598
598

552
552
552
552
552
552
554
555

073
073

065

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
415]

4+

(parser_thread) BA

(parser_thread) BA 1520

(parser_thread) Adjust this count 152@ to calibrate sensor in mBar.
(parser_thread) mBar now reads = 1027.9 (use cmd 'SA' when done)

(parser_thread) 62A3C5DD AF 00 00 00 00 00 00 00 6253A02C 172545.010 270102 V 00 0 +0044
(parser_thread) 67B@D179 BD 00 00 00 00 00 00 @@ 66CCOSEC 172548.002 270102 V 00 0 +0036

(192.168.1.103:41234-client-thread) Adding task...
(192.168.1.103:41234-client-thread) Added!
(192.168.1.103:41234-client-thread) Channel: 7/8

consumer-thread)|Got task

(consumer-thread) Got task!

(consumer-thread) [SERIAL] TH

{parser thread) TH

(parser_thread) TH TH=27.5

.192.168.1.103:41234-client-thread) Adding task ...
(192.168.1.103:41234-client-thread) Added!
(192.168.1.103:41234-client-thread) Channel: 6/8

(consumer-thread) Got task

(consumer-thread) Got task!

(consumer-thread) [SERIAL] BA

(parser_thread) BA

(parser_thread) BA 1520

(parser_thread) Adjust this count 1520 to calibrate sensor in mBar.
(parser_thread) mBar now reads = 1027.7 (use cmd 'SA' when done)
(192.168.1.103:41236-client-thread) Lost connection with 192.168.1.103:41236!
(192.168.1.103:41234-client-thread) lLost connection with 192.168.1.103:41234!
(parser_thread) 6C1B3092 80 3C 00 00 00 00 00 00 6B4471AC 172551.010 270102 V
(parser_thread) 6C1B3095 80 25 00 00 00 PO 00 00 6B4471AC 172551.010 270102 V
(parser_thread) 702E0BG6B A7 00 00 00 00 00 00 00 6FBCDA6C 172554.002 270102 V
(parser_thread) 70B360B0 80 3E 00 00 00 00 00 00 6FBCDA6C 172554.002 270102 V

00 0
00 0
00 0
00 0

+0044
+0044
+0036
+0036

DOXYGEN DOCUMENTATION

|
LabRC | abRC Main Page Related Pages Namesp Classes ~

LabRC

Muon telescope: developmentof it [VjuON telescope: development of acquisition and analysis
Introduction fUII chain

Muon telescope: overall description
Acquisition and analysis full chain

Tasks and tools

SHEEE Cosmic muons are produced in the upper atmoshpere. The interaction of primary cosmic rays, comprised essentially of protons,
Data format with air molecules gives rise to both pions and kaons (mesons), both of which have very short life times, and subsequently decay.

GUI documentation
N . The purpose of this project is to oprerate a portable muon telescope and monitor the time variability of the detected cosmic
etworking . PURPIPRAR - . ! : 2
muons. This variability is due to variations in the primary cosmic rays that arrive to Earth.
QuarkNet Card
Serial Interface Since the production of mesons, which are the particles from which the muons stem from, happens at altitudes of around 10
Software kilometres (that is, the lower stratosphere), the conditions of the terrestrial atmoshpere will have an impact on the muons' arrival

Namespaces at Earth. The upper atmoshpere will have an effect on the meson production through the mean free path of primary cosmic rays.

After the muons are generated, their arrival to Earth can be affected by metereological parameters such as atmospheric pressure
or temperature. Thus, these meteorological parameters will be monitored in parallel with the muon detection rate, so as to

evaluate any correlation.

FURTHER USES

1 The source programs (header files and C++ files) were constructed in a way to allow for easy
interpretation and re-implementation.

L There are both broad classes and niche classes, so a new client program can be constructed without
starting from scratch and taking advantage of one of different levels of implementation.

O The networking related classes (server and client) are 100% independent from the GUI.

1 Great care was taken to ensure proper documentation of every file, class and function, as well as how
to install and run the programs developed. There are also several small test programs where
implementation can be easily understood and quick tests in communication are performed.

What follows is a very simple example of communication with the server using
our “LRCClient” class.

#include "LRCClient.h"

#include "Common.h" = Includes

#include <1ostream>

int

main() {

LRC: :LRCClient client;

try {
client.reconnect("127.0.0.1", "8000"); _ Connecttoihe
} =
catch (Networking::network exception &exception) server
{
std::cout << "Unable to connect to server." << std::endl;
return 1;
I
LRC: :Result result;
auto vl = client.get_voltage(LRC::HVChannel::CHANNEL1, &result); > Get channel 1 voltage
1f (result !'= LRC::Result::SUCCESS || !'vl.has value()) 1
std::cout << "Error getting voltage for channel 1" << std::endl;
return- 1;
}
auto v2 = client.get_voltage(LRC::HVChannel::CHANNEL2, &result); | ——— Get channel 2 voltage
1f (result !'= LRC::Result::SUCCESS || !'v2.has_value()) 1
std::cout << "Error getting voltage for channel 2" << std::endl;
return 1;
}
std::cout << "Channel 1 voltage: " << vil.value() << " V" << std::endl; . O |
std: :cout << "Channel 2 voltage: " << v2.value() << " V" << std::endl; > Output results

get_string_delim()

std: :string Seriallnterface::get_string delim (const std::string & delim = "\n" ,

DOXYGEN DOCUMENTATION T L

Read bytes from the buffer until a 'delimiter’ is hit, or the number of bytes read is greater than maxsize.

LRCWindow Class Reference

This operation blocks until enough data is available.

Parameters
delim is the delimiter - this function stops reading more bytes after it encounters this sequence.

maxsize is the maximum number of bytes to be read. If maxsize=-1, then there is no upper limit.

#include < >

Inheritance diagram for LRCWindow:

i Returns
Window This function returns a string with the bytes read from the internal buffer, up to but not including the delimiter.

[1

| Networking::Client |

Collaboration diagram for LRCWindow:

Window I LRC::LRCClient l I LRC::Configuration

v

-
-~

current_configs

iclient2 ~
client -
p

LRCWindow

Professor Fernando Barao, Técnico Physics Dept.

Ana Sofia Sousa, MEFT

Franscisco Rodrigues, MEEC

LABORATORIO DE INSTRUMENTACAQ
E FISICA EXPERIMENTAL DE PARTICULAS

REFERENCES

* https://quarknet.org
e https://www.beej.us/guide/bgnet/html/

e https://www.technical-recipes.com/2014/getting-started-with-client-server-

applications-in-c/

e https://www.boost.org/

e https://developer.gnome.org/gtkmm-tutorial/3.24/
e https://tschoonj.github.io/gtkmm-plplot/index.html

e http://caboruivo.tecnico.ulisboa.pt:64104/api

https://quarknet.org/
https://www.beej.us/guide/bgnet/html/
https://www.technical-recipes.com/2014/getting-started-with-client-server-applications-in-c/
https://www.boost.org/
https://developer.gnome.org/gtkmm-tutorial/3.24/
https://tschoonj.github.io/gtkmm-plplot/index.html
http://caboruivo.tecnico.ulisboa.pt:64104/api

