Introduction to LHC physics: **Probing the Standard Model**

Michele Gallinaro LIP Lisbon July 6, 2021

✓ The Large Hadron Collider ✓ Experiments **Experimental program** ✓ Standard model

Experimental particle physics

Particle physics is a modern name for century-old effort to understand the basics laws of physics

Edward Witten

Questions:

- What are the elementary constituents of matter?
- What are the forces that determine their behavior

Experimentally

• Get particles to interact and study what happens

The Standard Model

Excellent agreement with all experimental results

Dark side of the Universe

- We know that ordinary matter is only ~4% of matter-energy in the Universe
- What is the remaining 96%?

The LHC may help to solve this problem, by discovering dark matter

The Large Hadron Collider

- Installation in existing LEP tunnel (27 Km)
- 1232 dipoles B=8.3T
- pp √s = 14 TeV L_{design} = 10³⁴ cm⁻² s⁻¹
- Heavy ions

 (e.g. Pb-Pb at 5TeV,
 p-Pb at 8TeV, Xe)
- First beam: Sept.2008
- 2012: 2 x 4 TeV
- 2015/18: 2 x 6.5 TeV
- 2021/23: 2 x 7(?) TeV

LHC experiments located at 4 interaction points

The LHC experiments

Proton collisions at the LHC

2010-2012

- Energy: 7/8 TeV
- Luminosity: 8x10³³ cm⁻²s⁻¹

2015-2018

- Energy: 13 TeV
- Luminosity: 2x10³⁴ cm⁻²s⁻¹

LHC collisions will restart in 2021 (14TeV?)

Accelerator challenges

х7

Relative to the Tevatron (Fermilab, USA)

- Energy (14 TeV)
- Luminosity (10³⁴ cm⁻²s⁻¹) x30
- Superconducting dipoles 8.3 T
- Operating temperature 1.9K (-271 C)
- More than 2000 dipoles
- 100 tons of liquid Helium
- Stored energy per beam: 350 MJoule
- Energy of a train of 400 tons at 150 Km/h
- LHC power consumption 120 MW

In the tunnel

CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST) Run / Event: 139779 / 4994190

First collisions at 7 Tel

(c) CERN 2009, All rights reserved.

... in a challenging environment

CMS Average Pileup (pp, $\sqrt{\mathrm{s}}$ =13 TeV)

Trigger

Trigger system decide if the event is interesting to be recorded

Two-step process: - Level 1: dedicated hardware processors

- High level: computer farm

High radiation levels

LHC Page 1: stable beams

Experiment control rooms

Cessy: Master Control Room

Fermilab: Remote Operations Center

Meyrin: CMS Data Quality Monitoring Center

Any Internet access

2009: first collisions at LHC

From Picture to Reconstruction

Particle Flow event reconstruction

- Particle Flow (PF) combines information from all subdetectors to reconstruct particles produced in the collision
 - charged hadrons, neutral hadrons, photons, muons, electrons
 - use complementary info. from separate detectors to improve performance
 - tracks to improve calorimeter measurements
- From list of particles, can construct higher-level objects

-Jets, b-jets, taus, isolated leptons and photons, MET, etc.

Re-discovery of the SM at LHC

Hadron interactions: pp scattering

Proton-proton scattering at LHC

- Hard interaction: qq, gg, qg fusion
- Initial and final state radiation (ISR,FSR)
- Secondary interaction ["underlying event"]

Monte Carlo simulation

Simulation

- Numerical process generation based on random numbers
- Very powerful in particle physics
- Event generation
 - Pythia, Herwig, Isajet, Sherpa ...
 - Hard partonic subprocess + fragmentation, hadronization, decay
- Detector simulation
 - GEANT ...
 - Interaction, response of all particles produced ...

Reconstruction/Analysis as for real data

Cross section measurement

Minimum Bias

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 6, 2021

Minimum bias events

- Particle density in minimum bias events
- Soft QCD (p_T threshold on tracks: 50 MeV)

Tuning of MC generators needed

Jet production

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 6, 2021

Jet production at LHC

Jet production at LHC (cont.)

Processes creating jets are complicated

- Parton fragmentation, with electromagnetic or hadronic showering in the detector
- Jet reconstruction is difficult
- Jet energy scale and reconstruction is large source of uncertainty

Jet energy calibration

Inclusive jet distribution

arXiv:1605.04436

- Produced abundantly at the LHC
- Very good agreement with NLO QCD over nine orders of magnitude
 - P_T extending from 20 to 2000 GeV

Dijet event at 13 TeV

CMS Experiment at the LHC, CERN Data recorded: 2016-May-11 21:40:47.974592 GMT Run / Event / LS: 273158 / 238962455 / 150

> Large mass dijet candidate event M_{ii}=7.7 TeV

Dijet mass

arXiv:1611.03568

Search for numerous BSM resonances:

 string resonance, excited quarks, axigluons, colorons, E6 diquarks, W' and Z', RS gravitons

W and Z bosons

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 6, 2021

W and Z bosons

- Leptonic decays (e/µ): very clean, small branching fractions
- Hadronic decays: two-jet final state, large QCD background

- Isolated high-p_T leptons: starting point of many analyses
 - Good rejection of QCD backgrounds
 - "Tracking" vs "calorimeter" isolation
- Excellent calibration signal
 - Electron energy scale, ID/trigger eff., etc.

W and Z bosons (cont.)

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 6, 2021

W and Z reconstruction

W/Z cross section vs \sqrt{s}

arXiv:1012.2466, CMS-SMP-15-004

Di-muon mass spectrum

CMS-DP-2015-055

Di-lepton events

 Select di-lepton candidate events

Search for other resonances

2017: Di-muon candidate event

CMS Experiment at the LHC, CERN Data recorded: 2017-Jun-27 15:39:36.789504 GMT Run / Event / LS: 297599 / 134277310 / 86

Large mass dimuon candidate event $M_{\mu\mu}$ =2.4 TeV

B-physics and Rare decays

- Study rare processes to look for NP
- Indirect searches: $B_{s/d} \rightarrow \mu \mu$
- Flavour changing neutral current (FCNC) forbidden at tree level in SM
- Can only go through loop diagrams

- Lepton Flavor Violation (LFV)
- Search for tau → 3 muon decays
- Very rare process: BR~10⁻⁴⁰!
- Study in Ds and W decays

Top quark

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 6, 2021

The top quark

Top quarks and BSM

- Monitoring of production mechanism
- Interpretation of m_{top}: top, W, Higgs masses
- Are properties consistent with our understanding of EWSB?
- Is there any sign of NP in top production/decay?

Cross sections vs Vs

arXiv:1112.5675

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 6, 2021

May 2017

L_{int}=0.7 fb'

L_{int}=0.7 fb⁻¹

L.,=1.0 fb⁻¹

L_{int}=0.7-1.0 fb

L...=0.8-1.1 fb

L.,=1.1 fb⁻¹

L_{int}=1.1 fb⁻¹

L.=1.1 fb⁻¹

L...=0.8-1.1 fb

L_{int}=0.7-1.1 fb

L.,=4.7 fb⁻¹

L.,=4.6 fb

L...=4.6 fb

L_{int}=1.7 fb⁻

L.=4.7 fb⁻¹

Lint=4.6 fb

L_{int}=5.0 fb⁻

Lint=2.2 fb⁻

L_{int}=3.9 fb⁻

L_{int}=3.5 fb⁻¹

350

Top quark mass

- Top is the only fermion with the mass of the order of EWSB scale
- Discovered Higgs boson fits well with precise determinations of m_W and m_{top}
- Precise measurements of m_t and m_W sensitive to presence of new particles in loop

Rare decays: ttV (V= γ ,Z,W)

arXiv:1711.02547, PLB779(2018)358, EPJC78(2018)140, CMS-TOP-17-016

- Measurements will give access to EW couplings of the top
- Top+vector boson production
- tt+Z: measure ttZ coupling
- tt+W/Z: sensitive to BSM
 ⇒in agreement with SM

- tZq sensitive to WWZ triple gauge coupling and tZ coupling
- Multivariate technique used

Precision Proton Spectrometer

CERN-LHC-2014-021

- PPS aims at measuring the surviving scattered protons on both sides of CMS in standard running conditions
- Allows detection of very rare SM processes and is sensitive to possible BSM processes through the anomalous couplings or direct production of new particles

CMS-TOTEM

TECHNICAL DESIGN REPORT FOR CMS-TOTEM PRECISION PROTON SPECTROMETER

BSM searches: resonances, etc.

CMS Experiment at the LHC, CERN Data recorded: 2015-Sep-11 22:46:54.589056 GMT Run / Event / LS: 256353 / 437637379 / 244

(defunct) diphotons at PPS

Composite Higgs, anomalous gauge-Higgs couplings, excited leptons, technicolor, extra dimensions, axions, heavy exotic states, dark matter candidates, ...? exclusive WW production

SM measurements

Standard Model theory of everything?

- Discovery of the Higgs boson marks the triumph of the SM
- However, even with the inclusion of the Higgs boson, SM is an incomplete theory

Tests of the SM

Beyond the Standard Model

The SM answers many of the questions about the structure of matter. But SM is not complete; still many unanswered questions:

- a) Why do we observe matter and almost no antimatter if we believe there is a symmetry between the two in the universe?
- b) What is this "dark matter" that we can't see that has visible gravitational effects in the cosmos?
- c) Are quarks and leptons actually fundamental, or made up of even more fundamental particles?
- d) Why are there three generations of quarks and leptons? What is the explanation for the observed pattern for particle masses?
- e) How does gravity fit into all of this?

Not only SM: we need ideas!

• What is that accounts for 96% of the Universe? It is one of the greatest mysteries of Science

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 6, 2021

~SM

Near future: High-Luminosity LHC

The HL-LHC will provide x20 more data than available today

Future machine at CERN (?)

- Future Circular Collider with 100Km circumference
 - Phase 1 (FCC-ee): electron-positron collisions at energies 90-365 GeV
 - Phase 2 (FCC-hh): proton-proton collisions at 100 TeV

Summary

- LHC at the energy/intensity frontier
- Probing the SM with a full spectrum of measurements
- Many studies performed with data collected so far
- Excellent consistency but SM is incomplete
- A surprise can appear at any time

