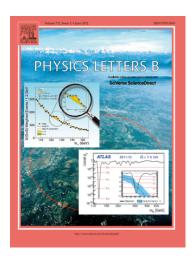
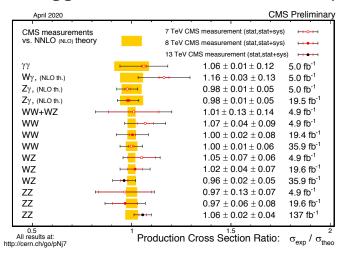
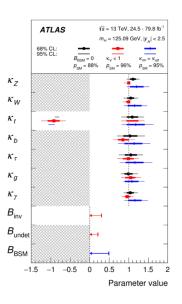

From the LHC to the future



Higgs boson discovery in 2012

- A major discovery in physics
- A new paradigm: the space in the whole Universe is filled with the Higgs field
- The study of the nature and properties of the Higgs boson is a scientific imperative for the next decades

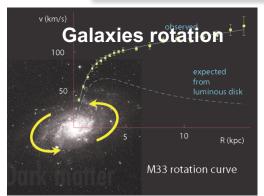




Search for new physics at LHC

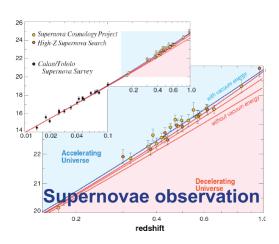
- So far the measurements at LHC are compatible with the SM predictions
 - about ~2500 papers have been published by the LHC collaborations
 - few discrepancies observed are not yet conclusive
- Precision of Higgs related measurements is presently ~20%

Much more data is needed to achieve 1% precision or below



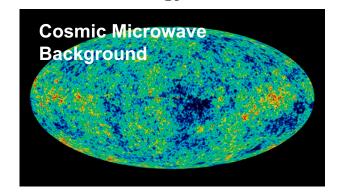
Some of the major questions today

- What is the nature of the Higgs field?
- Why do we observe matter and almost no antimatter in the universe?
- Why is the neutrino mass so small?
- Are quarks and leptons fundamental particles?
- Why are there three generations of quarks and leptons?


The dark side of the Universe

Experimental cosmology gives strong motivation for new physics:

What is Dark Matter? What is Dark Energy?


95% of the Universe is unknown

The expansion of the Universe is accelerating

Some form of dark energy fills the whole space creating a negative pressure

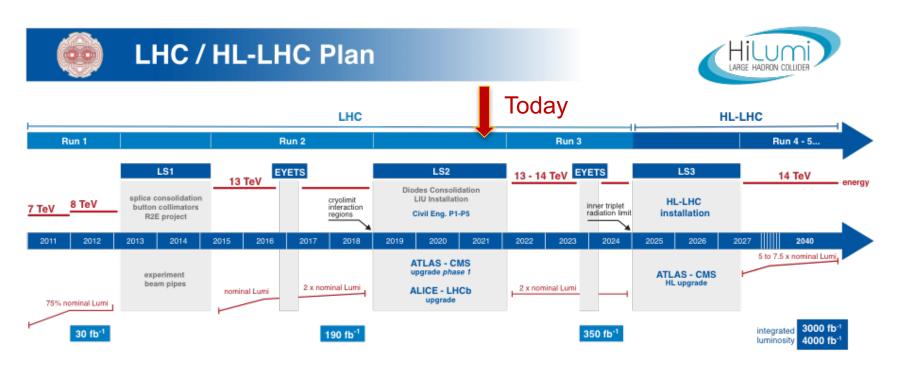
Measurements of CMB fluctuations allow precise assessment of dark matter and energy.

New colliders are necessary

- New colliders are necessary to address several of the major, fundamental open questions of particle physics
 - possible composite nature of the Higgs
 - solutions to the hierarchy problem
 - baryogenesis and the electroweak phase transition
 - the nature of dark matter
 - the origin of neutrino mass
 - the structure of possible flavor-changing neutral currents
- Many of the open questions beyond the Standard Model are related to the Higgs scalar sector.

The Higgs boson is special

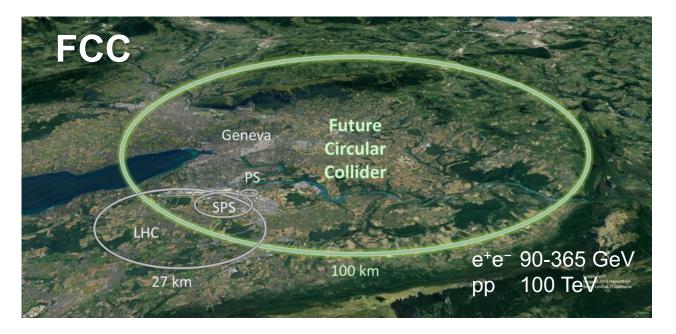
Higgs field = forces of very different nature than the other interactions


- only elementary particle with spin 0 (scalar)
- only particle (w/ defined quantum numbers) with self-interaction
- no underlying local symmetry
- no quantized charges
- deeply connected to the quantum structure of the vacuum

The precise knowledge of the **Higgs properties** is essential to our understanding of the deep structure of matter

Higgs precision program is very much needed to probe physics beyond the SM

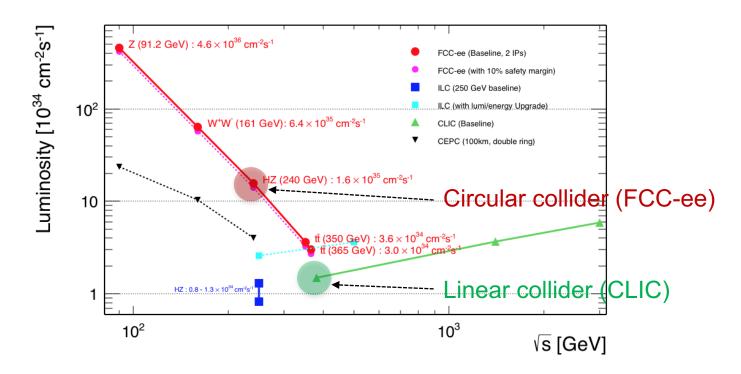
The High-Luminosity LHC


HL-LHC will provide 20 times more data than available today

FCC: future machine at CERN

Circular collider with 100 Km circumference:

- Phase 1 (FCC-ee): electron-positron collisions at energy 90-365 GeV
- Phase 2 (FCC-hh): proton-proton collision at energy 100 TeV


Higgs factory

- There is consensus in the HEP scientific community that a
 e⁺e⁻ collider as a Higgs factory should be the next machine.
- Extensive studies showed that the **best option is FCC-ee** with energy from the Z peak to 365 GeV.

Luminosity of e+e- machines

High luminosity is needed to achieve large Higgs statistics

Running scenario at FCC-ee

 Operation at the Z peak, at the WW threshold, at the HZ cross-section maximum and at the ttbar threshold

Z, years 1-2	Z, later	WW	HZ	${ m t} {ar { m t}}$	
88, 91, 94		157, 163	240	340 - 350	365
115	230	28	8.5	0.95	1.55
24	48	6	1.7	0.2	0.34
150		10	5	0.2	1.5
2	2	2	3	1	4
Number of events $5 \times 10^{12} Z$		10^8WW	$10^6~HZ$	$10^6 t \bar{t}$	
			+	+200k HZ	
			$25 \text{k} WW \rightarrow H$	$+50 \text{k} WW \rightarrow H$	
	88, 91, 115 24 150 2	88, 91, 94 115 230 24 48 150 2 2	88, 91, 94 157, 163 115 230 28 24 48 6 150 10 2 2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

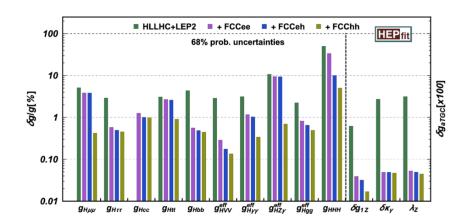
One million Higgs bosons!

Higgs couplings

• Deviations from the SM Higgs boson properties are described by multiplicative coupling strength modifiers, known as the κ framework.

- Expected precision of Higgs couplings
 ~1%
- FCC-ee can extract the Higgs selfcoupling with a precision of ±25%

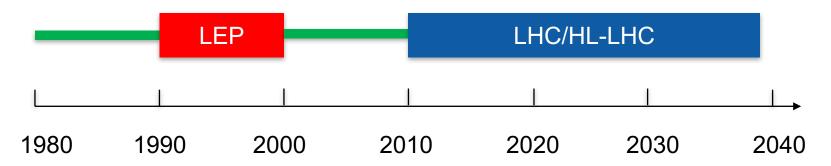
Coupling modifier	HL-LHC +		
(precision in %)	CLIC ₃₈₀	FCC-ee ₃₆₅	
κ_W	0.73	0.41	
κ_Z	0.44	0.17	
κ_g	1.5	0.90	
	1.4 *	1.3	
$\kappa_{\gamma} \ \kappa_{Z\gamma} \ \kappa_{c}$	10 *	10 *	
κ_c	4.1	1.3	
κ_t	3.2	3.1	
κ_b	1.2	0.64	
κ_{μ}	4.4 *	3.9	
$\kappa_{ au}$	1.4	0.66	
BR _{inv} (< %, 95% CL)	0.63	0.19	
BR _{unt} (< %, 95% CL)	2.7	1.0	


Phase 2: FCC-hh

- The 100 TeV FCC-hh will represent a major step in energy compared to LHC
- Superconducting magnet technology for hadron colliders still requires long development to reach 14-16 T.
- Detailed feasibility study of FCC-hh and experiments will be carried until 2027.

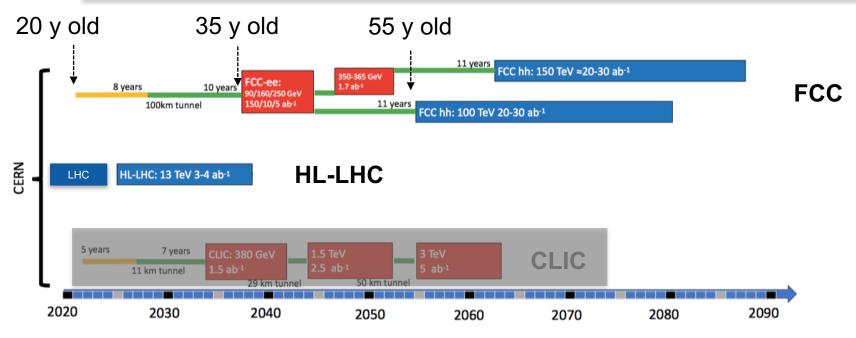
FCC-hh physics prospects

- Possibility of discoveries in an unchartered mass range
 - direct production of new heavy states up to tens of TeV
- Ultimate precision in Higgs properties
 - huge integrated luminosity of 30 ab⁻¹ (10x HL-LHC)
 - increase in production cross-section (10-60x HL-LHC)



- Precision on the Higgs selfcoupling of about 5%
- Access to exotic Higgs decays with tiny branching ratios

Past example


- Example: the LEP-LHC programme
 - e⁺e⁻ collider followed by a proton-proton collider in the same tunnel
 - total duration ~60 years

In the eighties, many people in the HEP community thought that it was worth to dedicate a lifetime to discover the Higgs!

The FCC scenario

Today, many people think that it is worth do dedicate a lifetime to understand what hides behind the Higgs!

Thank you for your attention