

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Tile Calorimeter

Past, Present and Bridges to Future

Rute Pedro

LIP Seminar | 24 June 2021

- Central hadronic calorimeter of ATLAS, covering $|\eta|$ <1.7
- Measures hadrons, jets, taus, missing transverse energy, assists in the muon reconstruction and electron ID
- Provides input to the Level 1 Calorimeter trigger

Past, Present, Future

Outline

Letter of Intent for a General-Purpose pp Experiment at the Large Hadron Collider at CERN

Detector design features

LIP contributions

Outline

Outline

Lessons to future detector design Detector R&D plans

Detector design features LIP contributions

- Steel plates (absorber) interleaved with plastic scintillator tiles (active medium) (4.7:1)
- Sampling period 18 mm, 64 wedged modules
- Plastic scintillators made of Polystyrene PS doped with PTP (1.5%) + POPOP (0.04%)

Detector Readout and Granularity

- Tile read out by wavelength shifting (WLS) optical fibres
- Fibres bundled and read by a Photomultipliers (PMTs) to define the unit cell
- Radially segmented: A, B(C) and D layers
- 5182 cells, (η, ϕ) granularity: cells in the A, B(C) layer 0.1 X 0.1, cells in the D layer 0.2 X 0.1
- Double PMT readout: 9852 readout channels

0.8 0.6

ATLAS

10

— Low gain

····· High gain

Signal Readout and Reconstruction

- PMT signals are shaped and amplified in two gains (low/high ratio 1:64) for high/low signal
- Amplified signal is digitised every 25 ns by a 10-bit ADC
- Signal amplitude A and time τ determined from a 7 signal samples S_i : $A = \sum' a_i S_i$ $\tau = \frac{1}{A} \sum' b_i S_i$

• Energy is reconstructed from signal amplitudes using calibration factors:

 $E[GeV] = A[ADC] \times f_{ADC \to pC} \times f_{pC \to GeV} \times f_{Cs} \times f_{Laser}$

• $f_{pC \rightarrow GeV}$ is the EM energy scale constant measured during test beam (2001-2003)

TileCal Calibration Systems

 $E[GeV] = A[ADC] \times f_{ADC \to pC} \times f_{pC \to GeV} \times f_{Cs} \times f_{Laser}$

- Cesium source calibrates optical components and PMTs responses: f_{Cs}
- Laser light system calibrates the response of PMTs and readout electronics: f_{Laser}
- Charge Injection System (CIS) calibrates the response of ADCs: $f_{ADC \rightarrow pC}$
- Integrator readout of Physics events to monitor the full detector response
- Cell response fluctuates due to PMT and scintillators performance variation, correlated to LHC operation

- 3 ^{137}Cs γ -sources (662 keV) to scan the calorimeter cells
- Hydraulic drive at 35 cm/s, few hours/scan
- Cell signal measured by the integrator readout (10 ms)

- Laser light source (532 nm)
- Attenuation filters wheel to adjust light intensity
- Beam expander and mixer into 400 dispatching fibres
- Monitoring photodiodes along the light path
- Pulses sent to each PMT
- Upgraded in LS1

LIP responsibilities in TileCal construction

Activity	Institution	Activity	Institution
Optics:		Electronics:	
Scintillator material procurement, including moulds	CERN, IHEP-Protvino, Lisbon	PMT blocks:	
Scintillator construction	IHEP-Protvino	PMT procurement	CERN, Clermont, Illinois, <mark>Lisbon/Coimbra</mark> , Pisa, Valencia
Wrapping material and tooling	Michigan	 PMT magnetic shielding 	Yerevan, CERN
Scintillator for the gap region	U.T. Arlington	HV dividers	Clermont
Fibres procurement, preparation, aluminization	Lisbon/Coimbra, Pisa		Beerland Chinese Challeday
Fibres profiles and insertion tooling	CERN, Lisbon/Coimbra	• 3-in-1 cards	Barcelona, Chicago, Stockholm
Girder rings and installation tooling	Clermont	 light mixers 	Lisbon/Coimbra, Prague
Fibre bundle tools	Lisbon/Coimbra	 mechanical parts of PMT blocks 	Clermont, Lisbon/Coimbra
Fibre bundle polishing tools	Yerevan	 PMT tests and PMT block assembly 	Clermont, Illinois, JINR-Dubna, Pisa,
Instrumentation and testing of the barrel modules	CERN, <mark>Lisbon/Coimbra</mark> , Pisa, Prague, JINR, IHEP, Rio	Calibration systems:	Lisbon / Coimbra, Valencia
Instrumentation and testing of ext. barrel A modules	Argonne, Illinois, Michigan, U.T. Arlin ton, Chicago	Laser system	Clermont, Lisbon/Coimbra
Instrumentation and testing of ext. barrel C mod- ules	Barcelona IFAE	• Source mechanics, including sensors and sources	Barcelona, CERN, IHEP-Protvino, JINR- Dubna

Scintillator procurement

R&D on scintillator production

(in collaboration with the Institute for Polymers and Composites - UMinho)

Studies of scintillator-fibre coupling Scintillator uniformity

T's

.

Fibre bundle preparation for polishing and mirroring

Fibre mirroring by Al deposit by magnetron sputtering

TIASILIP

Fibre quality control Measurement of Al coat reflection

Development of a robot for automatic fibre insertion in mechanical profiles (in collaboration with IST robotics)

10.00

ADD STORE

OUT TO THE OWNER OF

PMT quality control with dedicated test bench

1.11

at at

.....

1 3

11111

199.40 844

STREET.

the second

TileCal, from R&D to first collisions ~ 15 years (1993-2009) Slide from A. Henriques

1993-1995 R&D

1999-2002 Instrumentation

1999-2004 Electronics

2009: First collisions

2002-2004 Calibrations

2004-2006 Installation

2007-2009 Commissioning (Mostly with cosmic muons) Detector Operation and Performance How to face the HL-LHC challenges

Calibration with the Cs system

- ^{137}Cs γ -source scans 2-3 times/year in Run 2
- Cell response drifts due to scintillator degradation with exposure to radiation and PMT response loss with accumulated anode current
- Precision of the system for a typical cell is around 0.3%
- Maximal down-drifts for the innermost A layer

arxiv:2002.12800

Calibration with the Laser system

- Dedicated laser runs taken weekly
- Pulses also sent during collisions (in empty bunches) to calibrate timing
- PMT response variation evaluated w.r.t. last Cs scan, with calibration factors updated weekly (precision around 0.5%)
- Larger drifts in PMTs reading the A layer and E cells, with highest energy deposits

ATLAS Preliminary

Charge Injection system

- Calibrates the response of analog amplifiers and ADCs
- Injection of known charge signal (0 to 800 pC), shaped to match PMT signal
- Dedicated runs taken weekly to extract the pC to ADC conversion factor
- Precision of 0.7% and stability over time is ~0.03%

Time Calibration

- Adjust the digitiser sampling clock to the peak of the signal
- Bad time calibration can underestimate signal amplitude

- Time calibrations derived from time distribution in cells associated to jets, additional monitoring from laser signals
- Average cell time ~0.4 ns for E_{cell} > 20 GeV
- Resolution better than 1 ns for E_{cell} > 4 GeV

Noise measurement

- Total noise per cell in the calorimeter comes from:
 - Electronics
 - Pile-up
- Electronics noise ~20 MeV for all cells, measured regularly in dedicated runs without signal in the detector
- Pile-up noise dependent of the average number of interactions per bunch crossing
- Innermost cells in the A layer with larger energy deposits are more affected by pile-up noise

Detector Operation and Data Quality

- Detector Control System (a SCADA infrastructure) to Control and Monitor the TileCal operation and the detector parameters
- Run coordination, maintenance and data quality teams ensure the smooth operation of the detector
- Continuum monitoring to identify and mask problematic channels, correct mis-calibrations, detect data corruption and hardware issues
- Redundancy in the cell readout reduces the impact of masked channels
- Maintenance campaigns fix all issues to fully recover the system
- TileCal had 99.7% DQ efficiency in Run 2

Performance: Response to isolated hadrons

- The ratio of the calorimeter energy response to isolated charged hadrons (EM scale) to the track momenta
 < E/p > is used to evaluate uniformity and linearity during data taking
- Measured in Minimum Bias events
- Expected < E/p > < 1 due to the non-compensating nature of the TileCal (sampling calorimeter: e/h = 1.36)
- Data/MC agreement within 5%
- Jets are further calibrated to the jet energy scale

Performance: Response to cosmic muons

- Isolated muons from cosmic rays are used to study in situ the EM scale and the cells inter-calibration
- Cell response is evaluated as the energy deposited by the muon path length dE/dx
- Good energy response uniformity over ϕ
- < 5% non-uniformity in the η response to cosmic muons

Performance: Jet energy resolution

• Jet energy resolution better 10% for p_T^{jet} > 100 GeV

TileCal designed for
$$\frac{\Delta E}{E} \sim \frac{50\%}{\sqrt{E}} \oplus 3\%$$

Constant term within the expected 3%

How to face the HL-LHC challenges

- Detector upgrade
 - Electronics: PMT signals will be digitised and sent directly to the back-end to cope with new fully digital Trigger/DAQ
 - New HV remote system

- TileCal was designed for a 10 year operation at LHC nominal conditions
 - Understand detector ageing
 - Radiation damage in active components
 - Expected performance at the HL-LHC phase

High Voltage Upgrade

- High voltage regulation will be moved away from the detector
 - To ease access/maintenance and avoid radiation
- New crate, control and monitoring
- 100 m long cables needed to bring the HV to the detector

- Several boards being designed in collaboration with eCRLab
 - HV remote for the regulation of individual high voltages (48 ch / board)
 - HV supplies low voltage and primary high voltage (max -950 V)
 - FPGA adapter board for Zybo Z7 Zynq for control and monitoring
- Cables General Cable (Portuguese) developing new version

Thanks for the slide, Agostinho!

Optics Robustness

- Long plan ahead for the TileCal operation: study the radiation hardness of the TileCal optics
 - Bulk active elements can't be upgraded
 - Radiation degrades scintillator light output and WLS fibre's transparency

- Optics response obtained from comparison between
 - Cell response to Cs (or Minimum Bias events): ΔCs
 - PMT response to Laser pulses: ΔLas

Optics Robustness

$$I/I_0 = 1 + \frac{\Delta R_{Cs} - \Delta R_{Las}}{100\%}$$

- Multi-year cumulative I/I₀ assumes no light yield evolution in between collision years
- Spread of the dose estimate within the large cell volume
- Uncertainty on I/I_o assumes no correlation
 - Cesium systematics: ~0.5% (referenceCSsysts)
 - Laser uncertainties derived (referenceLasUnc)

Master thesis B. Pereira

- Great majority of the cells did not degrade (B and D layer), relative uncertainty is ~1%
- 6% light output loss in average for the A layer
- At the most, 10% light loss for A12, the most exposed barrel cell

Master thesis B. Pereira

Optics Robustness: Extrapolation to future runs

- Typically, the light output decreases exponentially with the dose, fitting exponential function
 - $I/I_0 = e^{p_o dose/p_1}$
- Up and down systematics variations fitted to determine uncertainty on the fit parameters
- Large extrapolation, data only in the beginning of the curve

350 fb⁻¹ @ Run 3

Expected Relative Light Yield at the end of the Run3

- Relative uncertainty 8 to 16% for the A layer and B cells (EB) and 5% for the remaining
- Expected about the same amount of light loss in Run 3 than we had in Run 2

Master thesis B. Pereira

• 6% light output loss in average for the A layer

Optics Robustness: What's next?

- Run 3 data will hep constrain the degradation model
 - More precise extrapolations
 - Measure eventual scintillator recovery (annealing)
- Dose rate effects?
 - CMS observed larger degradation for lower dose rates in the Endcap HCAL, <u>1608.07267</u>
 - Bicron-408, Polyvyniltoluene (PVT)-based, Saint-Gobain
 - SCSN-81, Polystyrene (PS)-based from Kuraray
 - Our preliminary results agree... (can play in our favor in the HL-LHC)

1000

1500

2000

Dose [Gy]

Optics Robustness: What's next?

- Study the effect of light loss on the detector performance at the HL-LHC
 - Define a few HL-LHC benchmark scenarios based on extrapolations
 - Simulate the degraded TileCal response on Geant4
 - Evaluate the impact on the detector measurements
 - Sensitivity to hadronic leakage (electron ID)
 - Jet energy resolution
- Mitigation strategy
 - Compensate light output loss with higher efficiency photodetectors
 - PMTs reading the A-layer will be replaced in the Phase-II upgrade

Lessons to future detector design Detector R&D plans

Future colliders: requirements for calorimeters

- FCC-ee: $\sqrt{s} = [90,350] GeV$
- FCC-hh: $\sqrt{s} = 100 \ TeV$, $\mathscr{L} < 3 \times 10^{35} cm^{-2} s^{-1}$
- Requirements for calorimetry
 - Excellent energy resolution and linearity
 - Time resolution $\mathcal{O}(20)\,ps\,$ to fight pile-up
 - Technology to stand radiation environment
- Open directions
 - Particle flow (combined calorimeter and tracker information)
 - Dual readout (event by event compensation, e/h = 1)
 - High-granularity segmentation (E, position (x,y,z))
 - Precise timing

Data rate (typ.) [kHz] Data rate (max.) [kHz]

ECFA Detector R&D Roadmap - Calorimetry

Future calorimeters

ECFA Detector R&D Roadmap - Calorimetry

Proposal of TileCal-like design as central hadronic calorimeter - HCAL

- Steel:lead:scintillating plastic tiles = 3.3:1.3:1
- 128 modules in ϕ , tiles separated by reflector material: $\Delta \phi = 0.025$
- Tile individual readout with WLS fibre into SiPM, signals merged into $\Delta \eta = 0.025$
- Also a valid option for FCC-ee (?)

- Other concepts available (e.g.)
 - Integrated readout of scintillators with SiPMs (CALICE, CMS HGCAL)
 - Dual-readout (eg. compact high-granular w/ ADRIANO2 tiles: 10% stochastic term)
 - Silicon-based High granular calorimeters (CALICE, CMS HGCAL)

1912.09962

What can we learn with the TileCal operation history?

- Detector design must optimise calorimeter response throughout the experiment lifetime
 - Light yield and detection efficiency
 - Response depends on design factors: scintillator properties, tile size, fibre coupling, fibre length, photodetector type, cell granularity...

$$R_{cell} = \left(\sum_{scint}^{tiles} f(\boldsymbol{\varepsilon}_{scint}, \boldsymbol{\varepsilon}_{t}(\lambda_{att}, \boldsymbol{\ell}_{scint})) \otimes f(\boldsymbol{\varepsilon}_{coupling}, \boldsymbol{\varepsilon}_{WLS}(\lambda), \boldsymbol{\varepsilon}_{r}, \boldsymbol{\varepsilon}_{t}(\lambda_{att}, \boldsymbol{\ell}_{fibre}))\right) \otimes f(\boldsymbol{\varepsilon}_{Q}, \boldsymbol{G})$$
Scintillators WLS fibres Photodetector

- Natural ageing: $\varepsilon \to \varepsilon(t)$
- Radiation damage: $\varepsilon \to \varepsilon(d, \dot{d})$

inspirehep/1197250 inspirehep/811858 Approximate numbers

- Unique data set from TileCal, several advantages
 - In-situ conditions
 - Low dose rates (very difficult to assess with laboratory irradiations)

Can Machine Learning teach us something?

N tiles

N rows

PhD work plan B. Pereira

- Combined fit to the TileCal geometry and optics response data with DNN regression
- Investigate the dependence of the obtained model on the different detector parameters and dose conditions

R&D on brighter and radiation-harder scintillators

- Independently of geometry optimisation and technology choices, active material must improve
 - Initial light yield is an overhead to maximise
 - More radiation hardness
 - More detectable light, i.e., best possible matching between emitted light wavelength and photodetector efficiency peak

- Novel materials look promising
 - PEN Polyethylene Naphtalate
 - PET Polyethylene Terephtalate

PET and PEN, scintillation properties

Material	Polyethylene naphthalate	Organic scintillator (ref. [14])	Plastic bottle (ref. [13])
Supplier	Teijin Chemicals	Saint-Gobain	Teijin Chemicals
Base	$(C_{14}H_{10}O_4)_n$	$(\mathrm{C}_{9}\mathrm{H}_{10})_{n}$	$(\mathrm{C}_{10}\mathrm{H}_8\mathrm{O}_4)_n$
Density	$1.33\mathrm{g/cm^3}$	$1.03\mathrm{g/cm^3}$	$1.33\mathrm{g/cm^3}$
Refractive index	1.65	1.58	1.64
Light output	$\sim 10500 \text{ photon/MeV}$	$10000 \mathrm{~photon/MeV}$	$\sim 2200 \text{ photon/MeV}$
Wavelength max. emission	$425\mathrm{nm}$	$425\mathrm{nm}$	380 nm

- Scintillate without addition dopants
- Emission spectrum well matched to typical photodetector efficiency
- PEN has larger light yield than expensive commercial BC-408
- PEN has large radiopurity and good mechanical properties
 - proposed as active vetoing structure in low-background experiments
- PEN affords an energy resolution of ~10% at 1 MeV, better than BC-408

iopscience/10.1209 arxiv:1806.04020

PET and PEN, radiation hardness

- Irradiation of PET and PEN sheets Goodfellow
- Cs-137 gamma source
- 10 and 100 kGy in 67 h
- Dose rates 150Gy/h and 1.5 kGy/h

- PEN degrades less and recovers faster
- PET degrades faster, recovers slower but shows larger recovery
 - (For doses and dose rates closer to real detector in-situ conditions)

arxiv:1605.00700

R&D on brighter and radiation-harder scintillators

- Re-initiated the collaboration with the Institute for Composites and Polymers UMinho
- Original initiative of Prof. A. Maio
- Goal of the project is to develop and investigate samples of PET and PEN blends
 - Do PEN and PET blend synergistically? What is the best material formula?
 - Is it advantageous to add dopants at all?

- Characterise the optical and scintillation properties of the samples at LOMaC/LIP
- Optimise and set up a scalable manufacturing technique
- Irradiate the best samples at laboratory to characterise the radiation resistance
 - Important to study dose rate effects

Extrusion machine

- 1 volumetric feeder
- 2 twin screw extruder
- 3 mini-gear pump
- 4 rheo-optical die
- 5 laser He-Ne
- 6 pinhole
- 7 screen
- 8 CCD camera
- 9 glass
- 10 photo detector

Letter of Intent for a General-Purpose pp Experiment at the Large Hadron Collider at CERN

In-house expertise and experience gained from LIP contribution to TileCal construction

Summary

Detector Operating and Performing very well Phase-II upgrade projects ongoing Study the expected detector performance at the HL-LHC

Summary

Radiation hardness is a critical aspect of plastic scintillator-based calorimetry

Investing in R&D on potential radiation-harder scintillators

ECFA Roadmap for the R&D on future detectors will help lightening the way

ACKNOWLEDGEMENTS

CERN/FIS-PAR/0002/2019

Integrator readout of Minimum Bias events

- Soft inelastic interactions (minimum bias events) are the most frequent in high energy proton collisions
- The total energy deposit in the calorimeter over a large time is proportional to the instantaneous luminosity
- Integrator readout of the PMT signals (10 ms) provides an independent measurement of the instantaneous luminosity (given an initial calibration)
- The system also monitors the full detector chain and allows finer grained calibration of more drifting cells in between Cs runs (specially relevant for E-cells not scanned with the Cs-source)

Performance: Response to jets

- Good description of the cell energy and noise distributions are crucial for building topoclusters and to reconstruct the missing transverse energy
- Good data/MC agreement in the tile cell energy distribution
- Jet energy resolution better 10% for p_T^{jet} > 100 GeV

TileCal designed for $\frac{\Delta E}{E} \sim \frac{50\%}{\sqrt{E}} \oplus 3\%$

• Constant term within the expected 3%

