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• Central hadronic calorimeter of ATLAS, covering |η|<1.7 
• Measures hadrons, jets, taus, missing transverse energy, assists in the muon reconstruction and electron ID 
• Provides input to the Level 1 Calorimeter trigger

Tile Calorimeter
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Detector Operation and Performance 
How to face the HL-LHC challenges
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Detector design features 
LIP contributions
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Overview of the Tile Calorimeter

• Designed for jet energy resolution    

• Steel plates (absorber) interleaved with plastic scintillator tiles (active medium) (4.7:1) 

• Sampling period 18 mm, 64 wedged modules 

• Plastic scintillators made of Polystyrene PS doped with PTP (1.5%) + POPOP (0.04%)

ΔE
E

∼
50 %

E
⊕ 3 %
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Detector Readout and Granularity

• Tile read out by wavelength shifting (WLS) optical fibres 

• Fibres bundled and read by a Photomultipliers (PMTs) to define the unit cell 

• Radially segmented: A, B(C) and D layers 

• 5182 cells,  granularity: cells in the A, B(C) layer  0.1 X 0.1, cells in the D layer 0.2 X 0.1 

• Double PMT readout: 9852 readout channels

(η, ϕ)
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Signal Readout and Reconstruction

• PMT signals are shaped and amplified in two gains (low/high ratio 1:64) for high/low signal 

• Amplified signal is digitised every 25 ns by a 10-bit ADC 

• Signal amplitude    and time    determined from a 7 signal samples   :    

• Energy is reconstructed from signal amplitudes using calibration factors: 

      

•   is the EM energy scale constant measured during test beam (2001-2003)

A τ Si

E[GeV ] = A[ADC ] × fADC→pC × fpC→GeV × fCs × fLaser

fpC→GeV
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TileCal Calibration Systems

• Cesium source calibrates optical components and PMTs responses:   

• Laser light system calibrates the response of PMTs and readout electronics:   

• Charge Injection System (CIS) calibrates the response of ADCs:   
• Integrator readout of Physics events to monitor the full detector response 

• Cell response fluctuates due to PMT and scintillators performance variation, correlated to LHC operation

fCs

fLaser

fADC→pC
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Calorimeter
Tiles

Photomultiplier
Tubes

Integrator Readout
(Cs & Particles)

Charge injection (CIS)

Digital Readout
(Laser & Particles)

Particles

Laser light

      E[GeV ] = A[ADC ] × fADC→pC × fpC→GeV × fCs × fLaser



• 3 sources (662 keV) to scan the calorimeter cells 
• Hydraulic drive at 35 cm/s, few hours/scan  
• Cell signal measured by the integrator readout (10 ms)

137Cs γ−
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TileCal Calibration Systems

• Laser light source (532 nm)  
• Attenuation filters wheel to adjust light intensity 
• Beam expander and mixer into 400 dispatching fibres 
• Monitoring photodiodes along the light path 
• Pulses sent to each PMT 
• Upgraded in LS1
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arxiv:2002.12800

https://arxiv.org/pdf/2002.12800.pdf


LIP responsibilities in TileCal construction
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Scintillator procurement 

R&D on scintillator production  
(in collaboration with the Institute for Polymers and Composites - UMinho)



Studies of scintillator-fibre coupling 
Scintillator uniformity
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Fibre bundle preparation for polishing and 
mirroring



Fibre polishing 



Fibre mirroring by Al deposit by magnetron 
sputtering



Fibre quality control 
Measurement of Al coat reflection



Development of a robot for automatic 
fibre insertion in mechanical profiles 
(in collaboration with IST robotics)



PMT quality control with dedicated test bench



TileCal, from R&D to first collisions ~ 15 years (1993-2009)

2004-2006 Installation 

1993-1995 R&D 1999-2002 Instrumentation1996-2002 Construction 1999-2004 Electronics

2002-2004 Calibrations 2007-2009 Commissioning 
(Mostly with cosmic muons)

2009: First collisions

Slide from A. Henriques



>2040 >>2050

Detector Operation and Performance 
How to face the HL-LHC challenges



Calibration with the Cs system

• source scans 2-3 times/year in Run 2 

• Cell response drifts due to scintillator degradation with exposure 
to radiation and PMT response loss with accumulated anode 
current 

• Precision of the system for a typical cell is around 0.3% 

• Maximal down-drifts for the innermost A layer

137Cs γ−
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Calibration with the Laser system

• Dedicated laser runs taken weekly 

• Pulses also sent during collisions (in empty bunches) to calibrate timing 

• PMT response variation evaluated w.r.t. last Cs scan, with calibration factors updated weekly (precision around 0.5%) 

• Larger drifts in PMTs reading the A layer and E cells, with highest energy deposits

25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

1.2

1.3

1.4

1.6

eta

ATLAS Preliminary
Tile Calorimeter

-3.24
A1

-3.34
A2

-3.28
A3

-3.39
A4

-3.27
A5

-3.82
A6

-3.74
A7

-3.80
A8

-4.05
A9

-4.06
A10

-1.70
B1

-1.73
B2

-1.66
B3

-1.81
B4

-1.82
B5

-1.72
B6

-1.89
B7

-2.52
B8

-2.31
B9

-1.70
C1

-1.73
C2

-1.66
C3

-1.81
C4

-1.82
C5

-1.72
C6

-1.89
C7

-2.52
C8

-.34
D0

-.31
D1

-.26
D2

-1.26
D3

-3.55
A12

-4.40
A13

-3.99
A14

-2.80
A15

-1.89
A16

-2.87
B11

-2.70
B12

-1.97
B13

-1.31
B14

-.94
B15

-2.54C10

-2.16
D4

-2.00
D5

-.78
D6

-4.61
E1

-5.93
E2

-4.62
E3

-3.92
E4<-5.0% -2.5% 0% 2.5% >5.0%

 run 364147, 2018-10-22.



Charge Injection system

• Calibrates the response of analog amplifiers and ADCs 

• Injection of known charge signal (0 to 800 pC), shaped to match PMT signal 

• Dedicated runs taken weekly to extract the pC to ADC conversion factor 

• Precision of 0.7% and stability over time is ~0.03%
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Time Calibration

• Adjust the digitiser sampling clock to the peak of the signal 

• Bad time calibration can underestimate signal amplitude 

• Time calibrations derived from time distribution in cells 
associated to jets, additional monitoring from laser signals 

• Average cell time ~0.4 ns for 20 GeV 
• Resolution better than 1 ns for 4 GeV

Ecell >
Ecell >

27



Noise measurement

• Total noise per cell in the calorimeter comes from:  
• Electronics 
• Pile-up 

• Electronics noise ~20 MeV for all cells, measured 
regularly in dedicated runs without signal in the 
detector 

• Pile-up noise dependent of the average number of 
interactions per bunch crossing 

• Innermost cells in the A layer with larger energy 
deposits are more affected by pile-up noise
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Detector Operation and Data Quality

• Detector Control System (a SCADA infrastructure) to Control and 
Monitor the TileCal operation and the detector parameters 

• Run coordination, maintenance and data quality teams ensure the 
smooth operation of the detector 

• Continuum monitoring to identify and mask problematic channels, 
correct mis-calibrations, detect data corruption and hardware 
issues 

• Redundancy in the cell readout reduces the impact of masked channels 

• Maintenance campaigns fix all issues to fully recover the system 

• TileCal had 99.7% DQ efficiency in Run 2

29

Masked module, also 
modelled in data simulation
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Performance:  
Response to isolated hadrons

• The ratio of the calorimeter energy response to isolated 
charged hadrons (EM scale) to the track momenta 

is used to evaluate uniformity and linearity 
during data taking 

• Measured in Minimum Bias events 

• Expected  due to the non-compensating 
nature of the TileCal (sampling calorimeter: 

) 

• Data/MC agreement within 5% 

• Jets are further calibrated to the jet energy scale

< E /p >

< E /p > < 1

e /h = 1.36

30



Performance:  
Response to cosmic muons

• Isolated muons from cosmic rays are used to study 
in situ the EM scale and the cells inter-calibration 

• Cell response is evaluated as the energy deposited 

by the muon path length   

• Good energy response uniformity over  

• < 5% non-uniformity in the    response to cosmic 
muons

dE /dx

ϕ

η
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Performance:  
Jet energy resolution

• Jet energy resolution better 10% for  100 GeV  

• TileCal designed for  

• Constant term within the expected 3%

p jet
T >

ΔE
E

∼
50 %

E
⊕ 3 %

32



How to face the HL-LHC challenges
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• Detector upgrade 

• Electronics: PMT signals will be digitised and sent directly to 
the back-end to cope with new fully digital Trigger/DAQ 

• New HV remote system

• TileCal was designed for a 10 year operation at 
LHC nominal conditions 

• Understand detector ageing 

• Radiation damage in active components 

• Expected performance at the HL-LHC phase

cds.record/2285583

https://cds.cern.ch/record/2285583


HV remote board

Adapter board for 
tests 

HV supplies 
board

High Voltage Upgrade

• High voltage regulation will be moved away from the detector 
• To ease access/maintenance and avoid radiation 

• New crate, control and monitoring 
• 100 m long cables needed to bring the HV to the detector 

• Several boards being designed in collaboration with eCRLab 
• HV remote – for the regulation of individual high voltages (48 ch / board) 
• HV supplies – low voltage and primary high voltage (max -950 V) 
• FPGA adapter board for Zybo Z7 Zynq - for control and monitoring 

• Cables – General Cable (Portuguese) developing new version

34Thanks for the slide, Agostinho!



Crate with 1HV supplies 
board being tested  



Optics Robustness

• Long plan ahead for the TileCal operation: study the 
radiation hardness of the TileCal optics 

• Bulk active elements can’t be upgraded 
• Radiation degrades scintillator light output and WLS 

fibre’s transparency 

• Optics response obtained from comparison between 

• Cell response to Cs (or Minimum Bias events):   

• PMT response to Laser pulses: 

ΔCs
ΔLas
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• Multi-year cumulative I/I0 assumes no light yield 
evolution in between collision years 

• Spread of the dose estimate within the large cell volume  

• Uncertainty on   assumes no correlation 

• Cesium systematics: ~0.5% (referenceCSsysts) 

• Laser uncertainties derived (referenceLasUnc)

I /Io

Optics Robustness
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https://indico.cern.ch/event/714261/contributions/2934934/attachments/1617662/2571724/cs_calib_2018.pdf
https://indico.cern.ch/event/954700/contributions/4011469/attachments/2118857/3565692/Uncertainties%20on%20Laser%20Calibration%20TW.pdf
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• Great majority of the cells did not degrade (B and D layer), relative uncertainty is ~1% 

• 6% light output loss in average for the A layer 

• At the most, 10% light loss for A12, the most exposed barrel cell

Master thesis B. Pereira
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• Typically, the light output decreases exponentially with the dose,  
fitting exponential function 

•    

• Up and down systematics variations fitted to determine 
uncertainty on the fit parameters 

• Large extrapolation, data only in the beginning of the curve 

I/I0 = epo−dose/p1

Optics Robustness: Extrapolation to future runs

HL-LHC

Run 2
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40

350 fb-1 @ Run 3

• Relative uncertainty 8 to 16% for the A layer and B cells (EB) and 5% for the remaining 

• Expected about the same amount of light loss in Run 3 than we had in Run 2 

• 6% light output loss in average for the A layerMaster thesis B. Pereira
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• Run 3 data will hep constrain the degradation model 

• More precise extrapolations 

• Measure eventual scintillator recovery (annealing) 

• Dose rate effects?  

• CMS observed larger degradation for lower dose rates in the Endcap 
HCAL, 1608.07267 

• Bicron-408, Polyvyniltoluene (PVT)-based, Saint-Gobain 

• SCSN-81, Polystyrene (PS)-based from Kuraray 

• Our preliminary results agree… (can play in our favor in the HL-LHC)

Optics Robustness: What’s next?

HL-LHC

Run 2

Run 3

Dose [Gy]

PhD work plan B. Pereira

https://arxiv.org/pdf/1608.07267.pdf
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• Study the effect of light loss on the detector performance at the 
HL-LHC 

• Define a few HL-LHC benchmark scenarios based on 
extrapolations 

• Simulate the degraded TileCal response on Geant4  

• Evaluate the impact on the detector measurements 

• Sensitivity to hadronic leakage (electron ID) 

• Jet energy resolution 

• Mitigation strategy 

• Compensate light output loss with higher efficiency 
photodetectors 

• PMTs reading the A-layer will be replaced in the Phase-II 
upgrade

Optics Robustness: What’s next?

Z → ee

1902.04655

PhD work plan R. Machado

https://arxiv.org/pdf/1902.04655.pdf
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Lessons to future detector design 
Detector R&D plans



Future colliders: requirements for calorimeters
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• FCC-ee:  

• FCC-hh:  ,   

• Requirements for calorimetry 

• Excellent energy resolution and linearity 

• Time resolution   to fight pile-up 

• Technology to stand radiation environment 

• Open directions 

• Particle flow (combined calorimeter and tracker information) 

• Dual readout (event by event compensation, e/h =1) 

• High-granularity segmentation (E, position (x,y,z)) 

• Precise timing

s = [90,350] GeV

s = 100 TeV ℒ < 3 × 1035cm−2s−1

𝒪(20) ps

ECFA Detector R&D Roadmap - Calorimetry

https://indico.cern.ch/event/999820/


Future calorimeters
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• Proposal of TileCal-like design as central hadronic calorimeter - HCAL 

• Steel:lead:scintillating plastic tiles = 3.3:1.3:1 

• 128 modules in , tiles separated by reflector material:  

• Tile individual readout with WLS fibre into SiPM, signals merged into  

• Also a valid option for FCC-ee (?) 

• Other concepts available (e.g.) 

• Integrated readout of scintillators with SiPMs (CALICE, CMS HGCAL) 

• Dual-readout (eg. compact high-granular w/ ADRIANO2 tiles: 10% stochastic term) 

• Silicon-based High granular calorimeters (CALICE, CMS HGCAL)

ϕ Δϕ = 0.025

Δη = 0.025

1912.09962
ECFA Detector R&D Roadmap - Calorimetry

https://arxiv.org/abs/1912.09962
https://indico.cern.ch/event/999820/
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• Detector design must optimise calorimeter response throughout the experiment lifetime 

• Light yield and detection efficiency 

• Response depends on design factors: scintillator properties, tile size, fibre coupling, fibre length, 
photodetector type, cell granularity… 

• Natural ageing:   

• Radiation damage:   

ε → ε(t)

ε → ε(d, ·d )

What can we learn with the TileCal operation history?

Rcell = (
tiles

∑ f (εscint, εt(λatt, ℓscint)) ⊗ f (εcoupling, εWLS(λ), εr, εt(λatt, ℓfibre))) ⊗ f (εQ, G)

Scintillators WLS fibres Photodetector



Unique data set from TileCal
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~300 tiles 
4 rows 
Tiles size: {19,15}x[30,35]x[32,37] cm 
75+75 fibres 
Fibres length: 122,137,159,174 cm 
Dose rate: 0.06 mGy/h

• Unique data set from TileCal, several advantages 

• In-situ conditions 

• Low dose rates (very difficult to assess with laboratory irradiations)
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~75 tiles 
3 rows 
Tiles size: 97x[22,24]x[23,25] cm 
25+25 fibres 
Fibres length: 207,214 cm 
Dose rate: 14.9 mGy/h~120 tiles 

6 rows 
Tiles size: {13,15}x[25,32]x[26,33] cm 
18+17+15+16 fibres 
Fibres length: 122,137,159,174 cm 
Dose rate: 0.6 mGy/h

inspirehep/1197250 
inspirehep/811858 
Approximate numbers

~80 tiles 
2 rows 
Tiles size: 19x[33,35]x[35,37] cm 
40+40 fibres 
Fibres length: 88,108 cm 
Dose rate: 0.02 mGy/h

https://inspirehep.net/literature/1197250
https://inspirehep.net/literature/811858


Can Machine Learning teach us something?

48

• Combined fit to the TileCal geometry and optics response data with DNN regression 

• Investigate the dependence of the obtained model on the different detector parameters and dose conditions
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tiles

∑ f (εscint, εt(λatt, ℓscint)) ⊗ f (εcoupling, εWLS(λ), εr, εt(λatt, ℓf ibre))

R

PhD work plan B. Pereira



R&D on brighter and radiation-harder scintillators

• Independently of geometry optimisation and technology choices, active material must improve 

• Initial light yield is an overhead to maximise 

• More radiation hardness 

• More detectable light, i.e., best possible matching between emitted light wavelength and photodetector 
efficiency peak 

• Novel materials look promising 

• PEN - Polyethylene Naphtalate 

• PET - Polyethylene Terephtalate



PET and PEN,  scintillation properties
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• Scintillate without addition dopants 

• Emission spectrum well matched to typical photodetector efficiency 

• PEN has larger light yield than expensive commercial BC-408 

• PEN has large radiopurity and good mechanical properties  

• proposed as active vetoing structure in low-background experiments 

• PEN affords an energy resolution of ~10% at 1 MeV, better than BC-408

arxiv:1806.04020
iopscience/10.1209

https://arxiv.org/abs/1806.04020
https://iopscience.iop.org/article/10.1209/0295-5075/95/22001/meta


PET and PEN, radiation hardness
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• Irradiation of PET and PEN sheets Goodfellow 

• Cs-137 gamma source 

• 10 and 100 kGy in 67 h 

• Dose rates 150Gy/h and 1.5 kGy/h 

• PEN degrades less and recovers faster 

• PET degrades faster, recovers slower but shows larger recovery  

• (For doses and dose rates closer to real detector in-situ conditions)

5 days

22 days

9 days

60 days

10 kGy 100 kGy

arxiv:1605.00700

https://arxiv.org/abs/1605.00700


R&D on brighter and radiation-harder scintillators
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• Re-initiated the collaboration with the Institute for Composites and Polymers - UMinho 

• Original initiative of Prof. A. Maio 

• Goal of the project is to develop and investigate samples of PET and PEN blends 

• Do PEN and PET blend synergistically? What is the best material formula? 

• Is it advantageous to add dopants at all? 

• Characterise the optical and scintillation properties of the samples at LOMaC/LIP 

• Optimise and set up a scalable manufacturing technique 

• Irradiate the best samples at laboratory to characterise the radiation resistance 

• Important to study dose rate effects
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Extrusion machine 
1 - volumetric feeder 
2 - twin screw extruder  
3 - mini-gear pump 
4 - rheo-optical die 
5 - laser He-Ne 
6 – pinhole  
7 – screen 
8 - CCD camera 
9 – glass 
10 - photo detector



Summary
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>2040 >>20501992

FCCee FCChh

In-house expertise and experience gained from LIP contribution to TileCal construction



Summary
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Detector Operating and Performing very well 
Phase-II upgrade projects ongoing 
Study the expected detector performance at the HL-LHC



Summary
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Radiation hardness is a critical aspect of plastic scintillator-based 
calorimetry 
Investing in R&D on potential radiation-harder scintillators 

ECFA Roadmap for the R&D on future detectors will help lightening the way



THANK you



ACKNOWLEDGEMENTS

CERN/FIS-PAR/0002/2019



Calibration with the Cesium system

• source scans 2-3 times/year in Run 2 

• Cell response drifts due to scintillator degradation with exposure to 
radiation and PMT response loss with accumulated anode current 

• Precision of the system for a typical cell is around 0.3% 

• Maximal down-drifts for the innermost A layer

137Cs γ−
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Integrator readout of Minimum Bias events

• Soft inelastic interactions (minimum bias events) are the most 
frequent in high energy proton collisions 

• The total energy deposit in the calorimeter over a large time is 
proportional to the instantaneous luminosity 

• Integrator readout of the PMT signals (10 ms) provides an 
independent measurement of the instantaneous luminosity 
(given an initial calibration) 

• The system also monitors the full detector chain and allows finer 
grained calibration of more drifting cells in between Cs runs 
(specially relevant for E-cells not scanned with the Cs-source)
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Performance:  
Response to jets

• Good description of the cell energy and noise 
distributions are crucial for building topoclusters 
and to reconstruct the missing transverse energy 

• Good data/MC agreement in the tile cell energy 
distribution 

• Jet energy resolution better 10% for  100 GeV  

• TileCal designed for  

• Constant term within the expected 3%

p jet
T >

ΔE
E

∼
50 %

E
⊕ 3 %

61


