About the universality (or not) of loop induced beauty decays.

Are we the same?

Yasmine Amhis (IJCLab) May 2021 University of LIP

The strength of flavour physics and indirect searches

PLB 192 (1987)

OBSERVATION OF B⁰-B⁰ MIXING

ARGUS Collaboration

In summary, the combined evidence of the investigation of B^0 meson pairs, lepton pairs and B^0 meson-lepton events on the Υ (4S) leads to the conclusion that $B^0-\bar{B}^0$ mixing has been observed and is substantial.

Parameters	Comments
r>0.09(90%CL)	this experiment
x>0.44	this experiment
$B^{1/2} f_{\rm B} \approx f_{\pi} < 160 {\rm MeV}$	B meson (\approx pion) decay constant
$m_{\rm h} < 5 {\rm GeV}/c^2$	b-quark mass
$\tau < 1.4 \times 10^{-12}$ s	B meson lifetime
$ V_{\rm rd} < 0.018$	Kobayashi-Maskawa matrix element
$n_{\rm OCD} < 0.86$	OCD correction factor a)
$m_t > 50 \text{ GeV}/c^2$	t quark mass

Standard Model

New Physics

hep-ph/9806303

hep-ph/9806303

Andrzej J. Buras

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \lambda^{\text{CKM}} \sum_i C_i \mathcal{O}_i + h.c,$$

SD: Wilson coefficients + perturbative

LD: Local operators + non perturbative (LCSR, Lattice, etc.)

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \lambda^{\text{CKM}} \sum_i \mathcal{O}_i + h.c,$$

SD: Wilson coefficients + perturbative

LD: Local operators + non perturbative (LCSR, Lattice, etc.)

A collection of tensions

Large effort to develop optimised variables to cancel hadronic uncertainties from LD.

"The" observable

A powerful probe to look for NP in an indirect way. Today, we discuss three papers: 1705.05802, 1903.09252, 2103.11769

What can we expect in the SM

1605.07633
$$R_{K^*}[1.1, \ 6.0]^{\text{SM}} = 1.00 \pm 0.01_{\text{QED}}$$
 $R_{K^+}[1.0, \ 6.0]^{\text{SM}} = 1.00 \pm 0.01_{\text{QED}}$

Assuming V-A currents

 $R_{\phi}(B_s) \approx R_{\pi K}(B) \approx R(\Lambda_b)_{\Lambda} \approx R(\Lambda_b)_{pK} \approx \ldots \approx R_K$

1909.02519

What can we expect in the SM

$$R_{K^*}[1.1, 6.0]^{SM} = 1.00 \pm 0.01_{QED}$$

$$R_{K^+}[1.0, \ 6.0]^{\text{SM}} = 1.00 \pm 0.01_{\text{QED}}$$

$$R_{\phi}(B_s) \approx R_{\pi K}(B) \approx R(\Lambda_b)_{\Lambda} \approx R(\Lambda_b)_{pK} \approx \ldots \approx R_K$$

1605.07633

1909.02519

A bit of complication

Why we call it $R_{pK} \rightarrow$ This will be true for all "complicated" final states.

A few particularities

$$R_{pK}^{-1} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^- e^+ e^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))} \bigg/ \frac{\mathcal{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}$$

 $\Lambda_b o p K \mu^+ \mu^-$ Was observed already & CPV : 1703.00256 $\Lambda_b o p K e^+ e^-$ First observation: 1912.08139

What we measure

$$R_{H} \propto rac{N(B
ightarrow H \mu^{+} \mu^{-})}{N(B
ightarrow H e^{+} e^{-})} imes rac{\epsilon (B
ightarrow H e^{+} e^{-})}{\epsilon (B
ightarrow H \mu^{+} \mu^{-})}$$

Counting from mass fits

From simulation

$$r_{J/\psi} = rac{BR(B o HJ/\psi(\mu^+\mu^-))}{BR(B o HJ/\psi(e^+e^-))} = 1$$
 $R_H = rac{N(B o H\mu^+\mu^-)}{N(B o HJ/\psi(\mu^+\mu^-))} imes rac{\epsilon(B o He^+e^-)}{\epsilon(B o HJ/\psi(e^+e^-))}}{rac{\epsilon(B o HJ/\psi(e^+e^-))}{\epsilon(B o HJ/\psi(\mu^+\mu^-))}}$

The LHCb detector

- Good vertex and impact parameter resolution σ (IP) = 15+29/p_T mm.
- Excellent momentum resolution ~ 25 MeV/c² two-body decays.
- Excellent particle ID (μ -ID 97% for ($\pi \rightarrow \mu$) misID of 1-3%).
- Versatile & efficient trigger.

What we reconstruct

Trigger

 μ^{-}

 μ^+

ECAL HCAL

 K^+

Muon Stations

 $\begin{array}{ll} \mbox{Electrons} & p_T > 2700/2400 \mbox{ MeV} \ \mbox{in } 2012/2016 \\ \mbox{Muons} & p_T > 1700/1800 \mbox{ MeV} \ \mbox{in } 2012/2016 \\ \end{array}$

1812.10790

PV

 B^+

Bremsstrahlung

 $\sigma \propto 1/m^2$

Energy loss ~ E_e

Energy loss ~ material

Match electron tracks to photon clusters in the ECAL Correct electron momenta by "attaching" photons.

Nuclei

Three categories of events: 0, 1, > 1 photons Different invariant mass shapes due to under- or over-correcting ECAL resolution is worse than tracker. Bin migration included in systematics.

Electrons vs muons

Even after Bremsstrahlung recovery, electrons still have degraded momentum, mass, q² resolution.

Particle ID and track reconstruction efficiencies also larger for muons than for electrons.

Get the differences between electron and muon efficiencies fully under control

From V. Lisovskyi

 B^+

 B^0

 Λ_b

Looking closer

Looking closer

Suppressing backgrounds

Identical selection between rare and control mode.

Combinatorial background

Train an MVA (BDT, NN) against it. Using simulation for signal and upper sidebands for background.

Particle misidentifications:

PID efficiencies measured using high-purity calibration samples. Tag & probe technique.

Partially reconstructed background

Cascade $b \rightarrow c \rightarrow s$ decays having same "visible" final state.

Or from excited states of final state hadrons.

Usually located below the signal peak so of less concern for muon mode. HCAL

Suppressing backgrounds

Use the momentum balance for electron mode to reduce the background.

1705.05802

a.k.a HOP!

Example of vetos

Invariant mass fits

Signal and background shapes determined from calibrated simulation. J/Ψ leakage constraint from the fit to the resonant mode.

A closer look

Invariant mass fits

Invariant mass fits

Calibration of simulation

To get the reliable efficiencies, correct the simulation in a data-driven way. Corrections are applied in terms of per-event or per-track weights.

Calibration of simulation

Most of corrections are computed by comparing the distributions of variables in J/Ψ mode of data and simulation samples.

Simulation is re-weighted to match the data.

10-folding technique to reduce correlations.

Efficiency calibration summary

After calibration, very good data/simulation agreement in all key observables.

Result of the cross-checks

$$B^{+} r_{J/\psi} = 0.981 \pm 0.020$$
$$B^{0} r_{J/\psi} = 1.045 \pm 0.006 \pm 0.045$$
$$\Lambda_{b} r_{J/\psi}^{-1} = 0.96 \pm 0.05$$

Compatibility with unity observed for all the modes !

 $r_{J/\psi}$

Cross-checks

Relative population of bremsstrahlung categories compared between data and simulation.

Cross-checks

NIM A555, 356-369 (2005)

Fit construction

Close your eyes and hope for the best !

Fit construction

Simultaneous fit to electron and muon mode, in various data-taking and trigger categories.

$$\begin{split} N^{i}(\Lambda_{b}^{0} \to pK^{-}\mu^{+}\mu^{-}) &= r_{\mathcal{B}} \times \frac{N^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to \mu^{+}\mu^{-}))}{\mathcal{B}(J/\psi \to \ell^{+}\ell^{-})} \\ & \times \frac{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}\mu^{+}\mu^{-})}{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to \mu^{+}\mu^{-}))} \end{split}$$

$$N^{i}(\Lambda_{b}^{0} \to pK^{-}e^{+}e^{-}) = R_{pK}^{-1} \times r_{\mathcal{B}} \times \frac{N^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to e^{+}e^{-}))}{\mathcal{B}(J/\psi \to \ell^{+}\ell^{-})} \times \frac{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}e^{+}e^{-})}{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to e^{+}e^{-}))}$$

 $r_{\mathcal{B}} \equiv \mathcal{B}(\Lambda_b^0 \to pK^-\mu^+\mu^-)/\mathcal{B}(\Lambda_b^0 \to pK^-J/\psi)$

$$\begin{aligned} & Fit \ construction \\ N^{i}(\Lambda_{b}^{0} \rightarrow pK^{-}\mu^{+}\mu^{-}) = (r_{\mathcal{B}} \times)^{V^{i}(\Lambda_{b}^{0} \rightarrow pK^{-}J/\psi(\rightarrow \mu^{+}\mu^{-}))}_{\mathcal{B}(J/\psi \rightarrow \psi^{+}\psi^{-})} \\ & \times \frac{e(\Lambda_{b}^{0} \rightarrow pK^{-}\mu^{+}\mu^{-})}{e^{i}(\Lambda_{b}^{0} \rightarrow pK^{-}J/\psi(\rightarrow \mu^{+}\mu^{-}))} \\ N^{i}(\Lambda_{b}^{0} \rightarrow pK^{-}e^{+}e^{-}) = (R_{pK}^{-1})(r_{\mathcal{B}} \times) \frac{V^{i}(\Lambda_{b}^{0} \rightarrow pK^{-}J/\psi(\rightarrow e^{+}e^{-}))}{\mathcal{B}(J/\psi \rightarrow \psi^{+}\psi^{-})} \\ & \times \frac{e^{i}(\Lambda_{b}^{0} \rightarrow pK^{-}e^{+}e^{-})}{e^{i}(\Lambda_{b}^{0} \rightarrow pK^{-}J/\psi(\rightarrow e^{+}e^{-}))} \\ & \times \frac{e^{i}(\Lambda_{b}^{0} \rightarrow pK^{-}e^{+}e^{-})}{e^{i}(\Lambda_{b}^{0} \rightarrow pK^{-}J/\psi(\rightarrow e^{+}e^{-}))} \end{aligned}$$

Observables From resonant fit From corrected simulation From the PDG

Systematic treatment

Uncertainty treatment depending on whether there is correlation between data taking and trigger categories:

Uncorrelated:

Gaussian constraints included in the mass fit : MC corrections, normalisation mode uncertainties.

Correlated:

Gaussian smearing of likelihood profile : Decay model corrections, fit model, m_{corr} cut efficiency, q² migration.

Systematic treatment

Source	Run 1 L0I	$\operatorname{Run} 1 \operatorname{L0E}$	$\mathrm{Run}\ 2\ \mathrm{L0I}$	$\mathrm{Run}\ 2\ \mathrm{L0E}$	Correlated
Decay model	_	_	_	_	1.9
Other corrections	3.4	3.6	3.6	3.2	_
$m_{\rm corr}$ cut efficiency	_	—	—	—	0.5
q^2 migration	_	_	_	_	2.0
Normalisation mode	3.7	3.7	3.5	2.7	_
Fit model	_	_	_	_	5.2
Total correlated		_	_	_	5.9
Total uncorrelated	5.0	5.2	5.0	4.2	_
	1				1

Log likelihood profile

First test of LU in b-baryons

$$R_{pK}^{-1}\Big|_{0.1 < q^2 < 6 \,\text{GeV}^2/c^4} = 1.17^{+0.18}_{-0.16} \pm 0.07$$

Inverting likelihood profile

$$R_{pK}|_{0.1 < q^2 < 6 \,\text{GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05$$

Statistical only Statistical + systematics

All the results

All results are statistically dominated. Within these uncertainties, the pattern is in the same direction ie : a deficit of muons...

Interpretation

Interpretation of the result in terms of NP is tricky with current setup, with more data :

- Study rich structure in m(pK) spectrum.
- Split low and middle q^2 bins: [0.1, 1] and [1, 6] GeV/c⁴.

Remember we had:

A prospect

Interpretation of the result in terms of NP is tricky with current setup, with more data :

- Study rich structure in m(pK) spectrum.
- Split low and middle q^2 bins: [0.1, 1] and [1, 6] GeV/c⁴.

Example of global fits

Best fits using "clean" point to tensions with the SM.

Another example

Similar picture including more observables.

EFT WG @CERN

Is there something "funny" happening with the muons?

Only more data analysed and improvements in the theory will tell us.

What to expect for LHCb?

$B^+ \rightarrow K^+ e^+ e^-$	054 1 00 [054]				
	$254 \pm 29 \ [274]$	1120	3300	7500	46000
$B^0 \rightarrow K^{*0} e^+ e^-$	111 ± 14 [275]	490	1400	3300	20000
$B_s^0 \rightarrow \phi e^+ e^-$	_	80	230	530	3 300
$\Lambda_b^0 \rightarrow pKe^+e^-$		120	360	820	5000
$B^+\!\to\pi^+e^+e^-$	_	20	70	150	900
R_X precision	Run 1 result	$9{\rm fb}^{-1}$	$23 {\rm fb}^{-1}$	$50 {\rm fb}^{-1}$	$300 {\rm fb}^{-1}$
R_K 0	$0.745 \pm 0.090 \pm 0.036$ [274]	0.043	0.025	0.017	0.007
$R_{K^{*0}}$	$0.69 \pm 0.11 \pm 0.05$ [275]	0.052	0.031	0.020	0.008
R_{ϕ}	_	0.130	0.076	0.050	0.020
R_{pK}	_	0.105	0.061	0.041	0.016
R_{π}	_	0.302	0.176	0.117	0.047

1812.07638 1808.08865

Conclusion

We are looking forward to new results and theory work see what happens to these flavour anomalies.

GDR-Intensity Frontier & IJCLab Flavour GT : **"Virtual Breakfast with g-2"** Tackling (g-2)_µ: theoretical efforts and latest results

May 19, 2021

Speakers:

Michel Davier (IJCLab, Orsay) Laurent Lellouch (CPT, Marseille) Harvey B. Meyer (Mainz) Dominik Stöckinger (Dresden)

Organising committee :

Yasmine Amhis Thibaut Louis Olcyr Sumensari Ana M. Teixeira

https://indico.ijclab.in2p3.fr/e/g-2

Organising committee:

Yasmine Amhis

Carla Marin Benito

Sébastien Descotes-Genon

Danny van Dyk

- Lepton flavour universality (LU) violation
- QED effects in LU tests and predictions
- Form factors from Ligh-Cone Sum rules and Lattice QCD for Lambda(1520)
- Angular analyses
- Lambda decay asymmetry from BES III
- Radiative NLO computation of photon polarisation and measurement prospects
- Production fraction and lifetime
- Estimation of charm-loop contributions
- Prospects for the various modes at LHCb

https://indico.in2p3.fr/event/20198/

About the significance

What about the muon g-2?

The effective Lagrangian for a generic exclusive decay based on $b \to s \ell_1^- \ell_2^+$, with $\ell_{1,2} \in \{e, \mu, \tau\}$ can be written as

$$\mathcal{L}_{\rm nc} \supset \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i \mathcal{O}_i + \text{h.c.}, \qquad (9)$$

where the effective couplings (Wilson coefficients) $C_i \equiv C_i(\mu)$ and the operators $\mathcal{O}_i \equiv \mathcal{O}_i(\mu)$ are defined at the scale μ . The operators relevant to this study are

$$\mathcal{O}_{9}^{\ell_{1}\ell_{2}} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}_{1}\gamma^{\mu}\ell_{2}) ,$$

$$\mathcal{O}_{10}^{\ell_{1}\ell_{2}} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}_{1}\gamma^{\mu}\gamma^{5}\ell_{2}) ,$$

$$\mathcal{O}_{S}^{\ell_{1}\ell_{2}} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}P_{R}b)(\bar{\ell}_{1}\ell_{2}) ,$$

$$\mathcal{O}_{P}^{\ell_{1}\ell_{2}} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}P_{R}b)(\bar{\ell}_{1}\gamma^{5}\ell_{2}) ,$$
(10)

in addition to the chirality flipped ones, \mathcal{O}'_i , obtained from \mathcal{O}_i by replacing $P_L \leftrightarrow P_R$. The effect of opera-

Who's your favorite LQ?

	Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
-	$S_1 = (3, 1)_{-1/3}$	*	~	*
	$R_2 = (3, 2)_{7/6}^{1/3}$	×	~	*
Requires UV	$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	×
completion	$S_3 = (3,3)_{-1/3}$	~	×	*
	$U_1 = (3, 1)_{2/3}$	~	~	✓
	$U_3 = (3,3)_{2/3}$	~	×	×

There appears to be a few scenarios which can accommodate the anomalies including those seen in semi-leptonic tree level decays.

$$\begin{split} & \textbf{WET} \\ \mathcal{H}_{\text{WET}}^{b \to s} \supset -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{tb} V_{ts}^* \sum_{i=9,10,S,P} \mathcal{C}_i^{\ell} \, \mathcal{O}_i^{\ell} \end{split}$$

SMEFT

$$\begin{aligned} O_{2223}^{LQ^{(1)}} &= (\bar{L}_2 \gamma_\mu L_2) (\bar{Q}_2 \gamma^\mu Q_3) \,, \\ O_{2223}^{LQ^{(3)}} &= (\bar{L}_2 \gamma_\mu \tau^A L_2) (\bar{Q}_2 \gamma^\mu \tau^A Q_3) \,, \\ O_{2322}^{Qe} &= (\bar{Q}_2 \gamma_\mu Q_3) (\bar{e}_2 \gamma^\mu e_2) \,, \\ O_{2223}^{Ld} &= (\bar{L}_2 \gamma_\mu L_2) (\bar{d}_2 \gamma^\mu d_3) \,, \\ O_{2223}^{ed} &= (\bar{e}_2 \gamma_\mu e_2) (\bar{d}_2 \gamma^\mu d_3) \,, \end{aligned}$$

CMS status report

Laurent Thomas, on behalf of the CMS collaboraton

> LHCC Open Session, November 20th, 2019

CMS

RK- cross-checks

Electron tracking

Figure 3: Distribution of the constrained invariant mass for (left) data and (right) simulated events, together with an example of a fit to this distribution. The simulated events contain at least one signal decay, resulting in a higher signal purity than is observed in data.

$$p_{\rm probe} = \frac{1}{2} \frac{m_{J/\psi}^2 - 2m_{\rm e}^2}{E_{\rm e,tag} - p_{\rm e,tag}\cos\theta},$$

Electron tracking

Figure 6: Efficiency in bins of number of primary vertices and the transverse momentum of the probe electron for (left) data and (right) simulation. The uncertainties shown are statistical only.
Profiles from R_K*

q² windows

Decay mode	$q^2 \left[\text{GeV}^2 / c^4 \right]$	$m_{(J/\psi)}(pK^{-}\ell^{+}\ell^{-}) [\text{GeV}/c^{2}]$
nonresonant e^+e^-	0.1 - 6.0	4.80-6.32
resonant e^+e^-	6.0-11.0	5.30-6.20
nonresonant $\mu^+\mu^-$	0.1-6.0	5.10-6.10
resonant $\mu^+\mu^-$	8.41 - 10.24	5.30-5.95

Systematic uncertainties

	$low-q^2$			$central-q^2$		
Trigger category	L0E	L0H	L0I	L0E	L0H	L0I
Corrections to simulation	2.5	4.8	3.9	2.2	4.2	3.4
Trigger	0.1	1.2	0.1	0.2	0.8	0.2
PID	0.2	0.4	0.3	0.2	1.0	0.5
Kinematic selection	2.1	2.1	2.1	2.1	2.1	2.1
Residual background	_	_	_	5.0	5.0	5.0
Mass fits	1.4	2.1	2.5	2.0	0.9	1.0
Bin migration	1.0	1.0	1.0	1.6	1.6	1.6
$r_{J\!/\psi}~{ m flatness}$	1.6	1.4	1.7	0.7	2.1	0.7
Total	4.0	6.1	5.5	6.4	7.5	6.7

PID performances @ LHCb

R_K*- HOP

R_K*

Trigger schemes

Partially reconstructed backgrounds

Figure 5: Simulated K^+e^- mass distributions for signal and various cascade background samples. The distributions are all normalised to unity. (Left, with log *y*-scale) the bremsstrahlung correction to the momentum of the electron is applied, resulting in a tail to the right. The region to the left of the vertical dashed line is rejected. (Right, with linear *y*-scale) the mass is computed only from the track information. The notation $\pi^-_{[\to e^-]}$ ($e^-_{[\to \pi^-]}$) is used to denote an electron (pion) that is misidentified as a pion (electron). The region between the dashed vertical lines is rejected.

Predictions

q^2 range [GeV ² / c^4]	$R_{K^{*0}}^{\mathbf{SM}}$	References	
	0.906 ± 0.028	BIP [26]	
	0.922 ± 0.022	CDHMV [27-29]	
[0.045, 1.1]	$0.919 \stackrel{+}{} \stackrel{0.004}{} \stackrel{-}{} \stackrel{0.003}{}$	EOS [30, 31]	
	0.925 ± 0.004	flav.io [32-34]	
	$0.920 \stackrel{+}{} \stackrel{0.007}{} \stackrel{-}{} \stackrel{0.007}{}$	JC [35]	
	1.000 ± 0.010	BIP [26]	
	1.000 ± 0.006	CDHMV [27-29]	
[1.1, 6.0]	$0.9968 \stackrel{+}{} \stackrel{0.0005}{} \stackrel{0.0004}{}$	EOS [30, 31]	
	0.9964 ± 0.005	flav.io [32-34]	
	0.996 ± 0.002	JC [35]	

R_K*

Yields

Decay Mode	Event Yield		
$B^+ \rightarrow K^+ e^+ e^-$	766 ± 48		
$B^+ \rightarrow K^+ \mu^+ \mu^-$	1943 ± 49		
$B^+ \rightarrow J/\psi (\rightarrow e^+ e^-) K^+$	$344100\pm~610$		
$B^+ \to J/\psi (\to \mu^+ \mu^-) K^+$	1161800 ± 1100		

	$B^0 \rightarrow K^{*0} \ell^+ \ell^-$		$B^0 \longrightarrow K^{*0} I/_2/_2 (\longrightarrow \ell^+ \ell^-)$	
	low- q^2	central- q^2	$D \to \Pi J/\psi (\to \ell \ \ell \)$	
$\mu^+\mu^-$	$285 \ ^{+}_{-} \ ^{18}_{18}$	$353 \ {}^{+\ 21}_{-\ 21}$	$274416 \ {}^+_{-} \ {}^{602}_{654}$	
e^+e^- (L0E)	$55 \ {}^+ \ {}^9_8$	$67\ ^{+\ 10}_{-\ 10}$	$43468 \ ^+_{-\ 221} \ ^{222}$	
e^+e^- (L0H)	$13 \ {}^+_{-} \ {}^5_{5}$	$19 \ {}^+ \ {}^6_5$	$3388 \stackrel{+}{_{-}} \begin{array}{c} 62\\ 61\end{array}$	
e^+e^- (L0I)	$21 \ {}^+ \ {}^5_4$	$25 \ ^+ \ ^7_6$	$11505 \ ^+_{-} \ ^{115}_{114}$	

Log plots - control modes

Luminosities @ LHCb

Background vetos

B^+	$m(K\ell^+\ell^-) < 5200 \text{ MeV}/c^2,$	all
D^+	$m(p\ell^+\ell^-)_{p\leftarrow K} < 5200 \text{ MeV}/c^2$	
ϕ	$abs(m(pK)_{p\leftarrow K} - 1020) > 12$	all
Λ_c^+	$m(pK\ell^+) > 2320 \text{ MeV}/c^2,$	all
	$m(pK\ell^-)_{p\leftrightarrow K} > 2320 \text{ MeV}/c^2$	
D^0	$abs(m(K^-\ell^+)_{\ell \leftarrow \pi} - 1865) > 20$	all rare
Smans	$abs(m(K^-\mu^+)_{K\leftarrow\mu} - 3097) > 35$	rare $\mu\mu$
swaps —	$m(K^-e^+)_{K\leftarrow e} < 2900 \text{ or } > 3150$	rare ee
conversions	$m(K^-e^+)_{K\leftarrow e} > 10, \ m(pe^-)_{p\leftarrow e} > 10$	all ee
clones	$\theta(K, \ell) > 0.5 \text{ mrad}, \ \theta(p, \ell) > 0.5 \text{ mrad}$	all

Λb

much more similar to muons at Belle.

1908.01848

Calorimeter

- The **SPD** and the **PS** consist of a plane of scintillator tiles (2.5 radiation lengths, but to only \sim 6% hadronic interaction lengths)
- The **ECAL** has shashlik-type construction, i.e. a stack of alternating slices of lead absorber and scintillator (25 radiation lengths)
- The **HCAL** is a sampling device made from iron and scintillator tiles being orientated parallel to the beam axis (5.6 interaction lengths)

Cross-checks

What we measure

$$R_{H} \propto \left| rac{N(B
ightarrow H \mu^{+} \mu^{-})}{N(B
ightarrow H e^{+} e^{-})}
ight| imes$$

$$\left| \begin{array}{c} \epsilon(B{
ightarrow}He^+e^-) \ \overline{\epsilon(B{
ightarrow}H\mu^+\mu^-)} \end{array}
ight.$$

Counting from mass fits

From simulation

