# Belina von Krosigk (<u>belina.von.krosigk@uni-hamburg.de</u>)

# LOW MASS DARK MATTER SEARCHES AT SuperCDMS



### LIP Seminar, 08.04. 2021





Cluster of Excellence Quantum Universe





# EVIDENCE FOR DARK MATTE





NASA/STScI; Magellan/U.Arizona/D.Clowe et al.





# GALAXY CLUSTERS

NASA/STScI; Magellan/U.Arizona/D.Clowe et al.



# Most "ordinary" matter

## Most mass

## Most mass

X-ray: NASA/CXC/CfA/M. Markevitch et al. Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D. Clowe et al. NASA/STScI; Magellan/U.Arizona/D.Clowe et al.







Artist's impression of a spiral galaxy embedded in a dark matter halo (Credit: ESO / L. Calçada)

### Dark Matter Halo





Artist's impression of a spiral galaxy embedded in a dark matter halo (Credit: ESO / L. Calçada)

### Dark Matter Halo



### **DIRECT DARK MATTER DETECTION**



### Any direct interaction with the atoms of the material.





### **THE DARK SECTOR**



Image: Torben Ferber

LDM: Light Dark Matter

ALP: Axion-Like-Particle





# THE SuperCDMS EXPERIMENT



### THE SuperCDMS COLLABORATION









Caltech

California Inst. of Tech.

**Northwestern** 

<u>SMU</u>



Durham University



 $\mathbb{X}$ 

Pacific Northwest





<u>SNOLAB</u>

Stanford University



U. California, Berkeley U. Colorado Denver

1597



\*Associate members

<u>U. Minnesota</u>



<u>U. South Dakota</u>

| 05 WT 19 492 |   |
|--------------|---|
| Sor R        | 3 |
| EP B         | 9 |
| Muso         | ų |
| Ctron 1      | 1 |
| NISER        | ġ |
| - XX         | ŗ |
| Summers,     |   |

<u>NISER</u>

| ~ |          |   | ۱. | - |  |
|---|----------|---|----|---|--|
| 3 | <u> </u> | Ē | 1  | ٹ |  |
|   | _        | - | _  | _ |  |
|   |          |   |    |   |  |

<u>SLAC</u>



<u>TRIUMF</u>

<u>U.Toronto</u>





NIST

<u>NIST</u>\*

UBC

<u>U. British Columbia</u>













### PAST AND FUTURE OF (Super)CDMS



### SuperCDMS @ Soudan 2009 - 2015

 $6.8 \text{ kg} \cdot \text{yr Ge}$ 

### **SuperCDMS @ SNOLAB 2023 - 2027**, 2027 - 20xx $100 \text{ kg} \cdot \text{yr} \text{ Ge}, 14.4 \text{ kg} \cdot \text{yr} \text{ Si}$



### PAST AND FUTURE OF (Super)CDMS



14

### SuperCDMS AT SNOLAB

![](_page_14_Picture_2.jpeg)

- ~ 2km deep underground in an active mine
  - 0.27 muons per m²/day
- Cleanroom class 2000
- Home to ~ 10 low background experiments

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

### SuperCDMS AT SNOLAB

![](_page_15_Picture_2.jpeg)

- ~ 2km deep underground in an active mine
  - 0.27 muons per m²/day
- Cleanroom class 2000
- Home to ~ 10 low background experiments

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

![](_page_15_Picture_9.jpeg)

### **STATUS OF SuperCDMS AND CUTE**

### R&D program ongoing (HVeV, CPD)

- Early science with CUTE in 2021
- Commissioning of SuperCDMS 2023
- Initial payload run starting in 2023

![](_page_16_Figure_7.jpeg)

### 17

### **THE SuperCDMS SET-UP**

- Starting with 4 towers
- Space for more towers!

![](_page_17_Picture_4.jpeg)

- 6 detectors per tower
- Detectors made from Si and Ge

![](_page_17_Picture_7.jpeg)

### SILICON AND GERMANIUM DETECTORS

Incoming, interacting particles generate **phonons** (i.e. heat / lattice vibrations) and **electron-hole pairs** (via ionization)

![](_page_18_Picture_3.jpeg)

Phonon channels

![](_page_18_Picture_5.jpeg)

interleaved with charge channels

![](_page_18_Figure_7.jpeg)

Phonon signal

![](_page_18_Picture_9.jpeg)

### SILICON AND GERMANIUM DETECTORS

Incoming, interacting particles generate **phonons** (i.e. heat / lattice vibrations) and **electron-hole pairs** (via ionization)

![](_page_19_Picture_3.jpeg)

Phonon channels

![](_page_19_Picture_5.jpeg)

interleaved with charge channels

Efficient nuclear recoil (NR) to electron recoil (ER) discrimination

![](_page_19_Figure_8.jpeg)

Phonon signal

![](_page_19_Picture_10.jpeg)

### SILICON AND GERMANIUM DETECTORS

Incoming, interac phonons (i.e. heat / lattice vibration

![](_page_20_Picture_3.jpeg)

Phonon channels

![](_page_20_Picture_5.jpeg)

interleaved with charge channels

Efficient nuclear recoil (NR) to electron recoil (ER) discrimination

### Incoming, interacting particles generate

### phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization)

![](_page_20_Picture_10.jpeg)

### Phonon channels

![](_page_20_Picture_12.jpeg)

![](_page_20_Picture_13.jpeg)

![](_page_20_Picture_14.jpeg)

### SILICON AND GERMANIUM DETECTORS

Incoming, interac phonons (i.e. heat / lattice vibration

![](_page_21_Picture_3.jpeg)

Phonon channels

![](_page_21_Picture_5.jpeg)

interleaved with charge channels

Efficient nuclear recoil (NR) to electron recoil (ER) discrimination

### Incoming, interacting particles generate

### phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization)

![](_page_21_Picture_10.jpeg)

### Phonon channels

![](_page_21_Picture_12.jpeg)

# Strongly reduced energy threshold

![](_page_21_Picture_14.jpeg)

### PHONON AMPLIFICATION OF IONIZATION SIGNAL

![](_page_22_Figure_2.jpeg)

Condensed layer of phonon sensors (top and bottom surface)

grouped in 12 Phonon channels:

HV

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)

### PHONON AMPLIFICATION OF IONIZATION SIGNAL

![](_page_23_Figure_2.jpeg)

How low can we go?

Condensed layer of phonon sensors (top and bottom surface)

grouped in 12 Phonon channels:

HV

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

### **R&D HIGH VOLTAGE DETECTOR**

![](_page_24_Picture_2.jpeg)

# Si chip (1cm<sup>2</sup> x 4mm, 0.93 g) with phonon sensors

![](_page_24_Figure_4.jpeg)

Single electron-hole pair resolution

Ultra-low threshold (band-gap)

![](_page_24_Picture_7.jpeg)

### **RECAP DETECTORS**

# iZIP

- Default detector
- ~ 1 kg Si or Ge
- Phonon and ionization readout
- **Efficient ER / NR** discrimination

![](_page_25_Figure_6.jpeg)

- ~ 1 kg Si or Ge
- Phonon readout only
- Phonon amplification of charge signal

### HV

Default detector

### Low threshold

## **HVeV**

- R&D detector
- ▶ ~ 1 g Si
- Phonon readout only
- Phonon amplification of charge signal
- Ultra-low threshold (band-gap)
- Single e<sup>-</sup>/h<sup>+</sup> pair sensitivity

![](_page_25_Picture_22.jpeg)

# DARK MATTER SEARCHE

![](_page_26_Picture_1.jpeg)

### **NUCLEAR vs. ELECTRON RECOIL EVENT CLASS**

![](_page_27_Picture_2.jpeg)

### Mostly primary phonons

Elastic <u>WIMP</u>-nucleon scattering

![](_page_27_Picture_5.jpeg)

![](_page_27_Picture_6.jpeg)

![](_page_27_Figure_7.jpeg)

Wilson, Chang, **BvK**, et al. Phys. Rev. D 102 (2020) 091101(R)

![](_page_27_Picture_9.jpeg)

# LDM-electron scattering

![](_page_28_Picture_1.jpeg)

### **EXPECTED LDM SIGNAL SPECTRUM**

![](_page_29_Figure_2.jpeg)

![](_page_29_Picture_4.jpeg)

### **EXPECTED LDM SIGNAL SPECTRUM**

![](_page_30_Figure_2.jpeg)

![](_page_30_Picture_5.jpeg)

### **EXPECTED LDM SIGNAL SPECTRUM – quantized**

![](_page_31_Figure_3.jpeg)

**lonization model** 

### 500 MeV/c<sup>2</sup> LDM on Si target

![](_page_31_Figure_7.jpeg)

![](_page_31_Picture_8.jpeg)

### **EXPECTED LDM SIGNAL SPECTRUM – quantized**

![](_page_32_Figure_2.jpeg)

![](_page_32_Picture_3.jpeg)

### LDM-electron scattering rate: $R(m_{\chi}) \sim \bar{\sigma}_{e}$

![](_page_32_Picture_6.jpeg)

### FIRST SuperCDMS-HVeV RESULTS

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_5.jpeg)

# Dark boson absorption

![](_page_34_Picture_1.jpeg)

### **DARK BOSON ABSORPTION**

![](_page_35_Picture_2.jpeg)

Analogous to photoelectric absorption Electron emitted with energy = ALP / Dark Photon mass

![](_page_35_Picture_5.jpeg)

### DARK BOSON ABSORPTION

![](_page_36_Figure_2.jpeg)

Unlike previous interaction: **Deposited en Rate (m**<sub>a</sub>) ~  $\rho_{\text{DM}} g_{\text{ae}}^2 \sigma_{\text{p.e.}} (E=m_{\text{a}}c^2)$ **Rate (m**<sub>A'</sub>) ~  $\rho_{\text{DM}} \varepsilon^2 \sigma_{\text{p.e.}} (E=m_{\text{a}}c^2)$ 

![](_page_36_Figure_4.jpeg)

### Unlike previous interaction: Deposited energy directly proportional to $m_a$ or $m_{A'}$

 $n_a c^2$ )  $\rho_{DM}$ : Local halo DM density

 $\sigma_{p.e.}$ : Photoelectric absorption coeff.

![](_page_36_Picture_8.jpeg)

### DARK BOSON ABSORPTION

![](_page_37_Figure_2.jpeg)

### Z, e

### Unlike previous interaction: Deposited energy directly proportional to $m_a$ or $m_{A'}$

### The lower the energy threshold the greater the mass reach!

![](_page_37_Figure_6.jpeg)

![](_page_37_Picture_7.jpeg)

### **ALP ABSORPTION LIMITS**

![](_page_38_Figure_2.jpeg)

Wilson, Chang, BvK, et al. Phys. Rev. D 102 (2020) 091101(R)

Germond, Fascione, **BvK**, et al. Phys. Rev. D 101 (2020) 052008

![](_page_38_Picture_5.jpeg)

![](_page_38_Picture_6.jpeg)

# TRIGGER FOR LOW MASS DARK MATTER SEARCHES

![](_page_39_Picture_1.jpeg)

### **CUSTOM DETECTOR CONTROL AND READOUT CARDS (DCRC)**

![](_page_40_Picture_2.jpeg)

### Prototype DCRC

![](_page_40_Picture_4.jpeg)

2.5 MHz (ionization)

625 kHz (phonon)

![](_page_40_Picture_6.jpeg)

![](_page_40_Picture_7.jpeg)

### **PRINCIPLES OF TRIGGERING AT SuperCDMS**

- Continuous trace, HVeV detector
- **Offline** Trigger:
  - Filtering with "Optimal Filter"
  - Threshold triggering

![](_page_41_Figure_6.jpeg)

Same principle for **Online** Trigger on FPGA (Level 1)

Raw trace Filtered trace Threshold

Trigger point Event

Kurinsky, Zaytsev, Meyer zu Theenhausen, Wilson, et al. arXiv:2012.12430 (submitted for publication)

![](_page_41_Picture_11.jpeg)

![](_page_41_Figure_12.jpeg)

![](_page_41_Picture_13.jpeg)

### **L1 TRIGGER ARCHITECTURE**

![](_page_42_Figure_3.jpeg)

![](_page_42_Picture_4.jpeg)

![](_page_42_Figure_5.jpeg)

### L1 TRIGGER: R&D TO FURTHER REDUCE NOISE

![](_page_43_Figure_2.jpeg)

![](_page_43_Picture_3.jpeg)

![](_page_43_Picture_5.jpeg)

![](_page_43_Figure_6.jpeg)

### LOW ENERGY EVENTS IN SuperCDMS CRYSTALS

![](_page_44_Figure_2.jpeg)

- Signal-like events:
  - particle energy depositions in crystal
  - constant, known pulse-shape
- "Background" events:
  - not particle induced
  - externally induced vibrations
  - varying, unknown pulse-shapes

### Not distinguishable by existing trigger

![](_page_44_Picture_12.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

### CONCLUSION

Understanding the nature of Dark Matter is one of the biggest challenges in science today

SuperCDMS at SNOLAB offers a unique chance to probe uncharted territory in the near future

Never hesitate to pioneer! Reach beyond existing sensitivities can only be achieved by new ideas and concepts

![](_page_46_Picture_5.jpeg)

![](_page_46_Picture_6.jpeg)

### PROJECT GOALS FOR INITIAL PAYLOAD (2021-2026)

![](_page_48_Figure_2.jpeg)

Ge HV: Limited by tritium (cosmogenic) betas

Si HV: Limited by <sup>32</sup>Si (and tritium) betas

Ge iZIP: Limited by exposure (thanks to ER discrimination)

Si iZIP: Limited by exposure (thanks to ER discrimination)

![](_page_48_Picture_8.jpeg)

![](_page_48_Picture_9.jpeg)

![](_page_48_Figure_10.jpeg)

![](_page_48_Picture_11.jpeg)

### **ALP ABSORPTION LIMITS**

![](_page_49_Figure_2.jpeg)

Dominating uncertainty at low masses: photoelectric (p.e.) cross-section => Precision p.e. cross-section measurements at low energies and temperatures Stanford, Wilson, BvK, et al. AIP Advances 11 (2021) 025120 **BvK**, **Wilson**, et al. arXiv:2010.15874 (submitted for publication in PRD)

![](_page_49_Picture_5.jpeg)

### **UNCERTAINTY OF PHOTOELECTRIC CROSS-SECTION**

Stanford, Wilson, BvK, et al. AIP Advances 11 (2021) 025120

![](_page_50_Figure_3.jpeg)

**BvK**, **Wilson**, et al. arXiv:2010.15874 (submitted to and recommended for publication in PRD)

![](_page_50_Figure_5.jpeg)