High Energy Experiments in Astronomy Multiple Galactic Sources

> Beatriz Pereira – 81813 TFPAC - MEFT

Cosmic-Rays

- \rightarrow MISTERIES OF COSMIC-RAYS
- ightarrow The 'knee' in the spectrum, around 1 PeV
 - ightarrow Sources of galactic origin
- ightarrow 'Ankle' situated at around 3 EeV
 - ightarrow Sources of extra-galactic origin
- \rightarrow Detection via balloons and space experiments only possible up to 10¹⁴ eV

HAWC Observatory

Water Cherenkov tank

Pico de Orizaba

150 m

(5,626 m)

Gamma rays vs cosmic rays

HAWC selects gamma rays from among a much more abundant background of cosmic rays.

gamma-ray shower

"hot" spots concentrate around the core cosmic-ray shower

"hot" spots are more dispersed

HAWC is located at 4,100 m above sea level, covering an area of 20,000 m².

Detectors

Field of View

Duty Cycle (uptime)

Small (<2°)

Low (5-10%)

Large (>45°)

High (>90%)

(b) Scaler DAQ

Fig. 2 - HAWC Sensitivity to Short GRBs.

Experimental Procedure

Ground Parameter Method v Neural Network Method

HAWC's Estimators Performance

- GP has a higher bias below 1 TeV
- HAWC has a higher sensitivity to TeV than GeV; the low bias does not affect the fit.
- GP method is more suitable because it has better performance for temperatures above 32 TeV.

Mixing Matrices for the GP

LHAASO Estimators Performance

The energy resolution is energy and zenith angle dependent.

Event-by-event comparison of the primary true energy and the reconstructed energy for simulated gamma-ray events over zenith angles $0^{\circ}-50^{\circ}$.

The color represents the log probability density within each reconstructed energy E_{rec} bin.

In this work, the events with reconstructed energy above 10 TeV are divided into five bins per decade.

ANALYSIS METHOD

- \rightarrow Reconstruction
 - ightarrow Core Reconstruction
 - \rightarrow Direction Determination
- ightarrow Likelihood fit
- \rightarrow Event's selection

ANALYSIS METHOD

- \rightarrow Reconstruction
 - ightarrow Core Reconstruction
 - \rightarrow Direction Determination
- ightarrow Likelihood fit
- \rightarrow Event's selection

ANALYSIS METHOD

- \rightarrow Reconstruction
 - ightarrow Core Reconstruction
 - \rightarrow Direction Determination
- ightarrow Likelihood fit
- \rightarrow Event's selection

The fit for sources like Crab Nebula Log parabola:

$$\frac{dN}{dE} = \phi_0 \left(\frac{E}{E_0}\right)^{-\alpha - \beta \ln \left(\frac{E}{E_0}\right)}$$

Others were used the power-law with an exponential cutoff:

$$\frac{dN}{dE} = \phi_0 \left(\frac{E}{E_0}\right)^{-\alpha} exp\left(\frac{-E}{Ecut}\right)$$

The test statistc equation:

$$TS = 2 ln \left(\frac{L_{s+b}}{L_b} \right)$$

Results and Discussion

Observations of the Crab Nebula

Crab Nebula Spectrum Comparison

LHAASO

- The statistical significance of the gamma ray signal from Crab Nebula is 14.7 σ past 100 TeV.
- The spectrum from 10 TeV to 250 TeV is well fitted with a power-law function with a spectral index of 3.09

HAWC

- The statistical significance in the fit is above 2σ past 100 TeV
- To 100 TeV log-parabola fit is preferred over the cutoff
 - 0.2 σ for the GP and 2.4 σ for the NN
- Log-parabola fit is preferred over the log parabola convolved with a hard cutoff at 56 TeV
 - 5.12σ for the GP and 6.99σ for the

Maps in more detail:

56 TeV

Other sources' spectra past 100 TeV

In one of the sources (eHWC J1825-134) power-law with an exponential cutoff; the other two sources are fit to a log-parabola

Note that in the spectrum of eHWC J1907+063 has a relatively hard spectral index and less curvature than other sources!

Also, in IACTs... but HAWC tends to measure higher fluxes.

Questions and discussion!

Crab Nebula

What comes next?

Mechanisms?