Search for heavy right-handed W bosons & neutrinos

Tópicos de Física de Partículas

Author: Maria Faria ist196958 Professor: Nuno Leonardo

Introduction

- → I will review the two most recent papers from CMS and ATLAS concerned with the search of heavy right-handed W gauge bosons and neutrinos in final states lljj, $l = e, \mu, j = jet$:
 - **CMS** (2018) : $\sqrt{s} = 13 \text{ TeV}$, $L = 35.9 \text{ fb}^{-1}$ (2016)
 - **ATLAS** (2019) : $\sqrt{s} = 13$ TeV, L = 36.1 fb⁻¹ (2015+2016)
- → The right-handed W gauge bosons (W_R) and neutrinos (N_R) appear in left-right symmetric models (LRSM) containing a see-saw mechanism
- \rightarrow LRSMs try to answer the question:

Why is the weak interaction left-handed?

Left-right symmetric model (LRSM)

- The left-handedness of the weak interaction arises as the result of **spontaneous symmetry breaking (SSB)** \rightarrow
- The standard model (SM) is the low-energy approximation of a more fundamental theory that possesses \rightarrow extra heavier gauge bosons (W_R , Z_R) 3

See-saw mechanism

 \rightarrow Attempt to explain the origin of the neutrino masses

Type-I see-saw

 \rightarrow Adds right-handed neutrinos N_{iR}

Physical states (mass eigenvalues):

 $O(m) \gg O(d)$

- Light neutrinos $m_{\nu} \sim \frac{O(d^2)}{O(m)}$
- Heavy Majorana neutrinos w/ mass~O(m)

Majorana: particles which are their own antiparticles

Majorana mass term violates lepton number by 2 units

Lepton-number violating processes can occur

Inverted see-saw

→ Adds right-handed neutrinos N_{iR} and $SU(2)_L$ singlets neutral (sterile) fermions S_{iL}

Physical states (mass eigenvalues):

- Light neutrinos $m_{\nu} \sim O(\mu) \frac{O(d)}{O(n)}$
- Light sterile states w/ mass~0(μ)
- **Pseudo-Dirac** heavy neutrinos w/ mass $\sim O(n) + O(d)$

$O(d), O(n) \gg O(m), O(\mu)$

Pseudo-Dirac: formed by a pair of degenerate Majorana particles

Lepton-number violating processes cannot occur

The KS process: $q\bar{q} \rightarrow llq\bar{q}$

Experimental signature (final state) : lljj (2 charged leptons $l = e, \mu + 2$ jets j)

 $M_{W_R} > M_{N_R}$: W_R mass is reconstructed from m_{lljj}

 $M_{N_R} > M_{W_R}$: W_R mass is reconstructed from m_{jj}

Explored by ATLAS for the 1st time!

Majorana vs Dirac

Charges of the dileptons in the final state:

- N_R are Dirac: dileptons in the final state have opposite-sign (OS) charges
- *N_R* are Majorana: mixture between dileptons with opposite-sign and same-sign (SS) charges

State of the art

- \rightarrow The KS process has been studied by both CMS and ATLAS collaborations at $\sqrt{s} = 7,8,13$ TeV with $l = e, \mu$
- \rightarrow CMS also studied the final state $\tau \tau j j$ at $\sqrt{s} = 13$ TeV
- ightarrow No significant deviations from the SM predictions were observed
- \rightarrow Prior to the reviewed articles, CMS detected a **2.8** σ excess over the SM background in the electron channel at $m_{eejj} \sim 2.1$ TeV

ATLAS detector

CMS detector

Datasets & simulations

Signal model

Datasets : 2016 pp data (35.9 fb⁻¹) (CMS) ; 2015+2016 pp data (36.1fb⁻¹) (ATLAS) at $\sqrt{s} = 13$ TeV **Simulations** are performed in order to optimise the event selection and to estimate background contamination

In the case of **ATLAS**:

- \rightarrow Events are generated containing only Majorana N_R neutrinos
- \rightarrow For Dirac neutrinos, only OS events are used in the analysis
- \rightarrow Signal samples are generated for different W_R and N_R mass hypotheses ($m_{N_R} < 2 m_{W_R}$)

In the case of **CMS**, signal events are generated assuming $m_{N_R} < \frac{1}{2} m_{W_R}$

Single event = hard scattering pp collision + pp interaction vertices (**pileup**)

Detector response is simulated with Geant4

Background model

Background : SM processes that produce events with the same final-state as the signal model

Signal would appear as excess over the SM background expectation in the kinematic distributions

Sources of background are similar in the two analyses:

Other: $t\bar{t}V$ (V = W, Z, H) & single top production

CMS

- Drell-Yan+jets Main
- *tt* production
- Diboson production (\approx 1.5%)
- W+jets (≈0.5%)
- Single top production (≈5%)
- OCD multijet events (≈0.1%)

Prompt lepton: lepton originating from a W,Z or H boson decay or from a τ –lepton if the τ originates from a prompt decay

Selections

Object reconstruction

- Association of a charged particle track with energy deposits in the EM calorimeter (ECAL)
- Electrons in the transition region between the barrel and endcap of ECAL are rejected
- Must be isolated
- Muons
 Association of a charged particle track with a track in the muon system
 Must be isolated

Electrons

- → Jets
 Reconstructed with anti-k_T algorithm
 Jets originating from pileup interactions are removed

- Additional selections
- To avoid overlap between diferente particle types
 Electrons are removed if they share track with a muon

ATLAS selections

Primary vertex (PV) : the vertex with the largest value of summed p_T^2 in the event

An event needs to have at least 1 reconstructed PV with at least 2 associated tracks w/ $p_T > 400$ MeV

- Events containing b-quarks are rejected (reduce contamination from top-quark production)
- Events need to have at least two leptons with the same flavour (*ee* or $\mu\mu$) and two jets w/ $p_T > 100$ GeV and $|\eta| < 2.0$

After these selections the **main SM background contributions** are:

- Z+jet(s) in OS and electron SS channel
- Diboson production in muon SS channel

Analysis regions

Signal regions (SR) : designed to contain majority of signal events & extract signal yields Control regions (CR) : constrain background predictions Validation regions (VR) : validate background predictions

 $m_{jj} > 110 \text{ GeV}, m_{ll} > 400 \text{ GeV}$ p_T sum of two leptons and two most energetic jets (H_T) >400 GeV

$CMS \, selections$

Primary vertex (PV) : the vertex with the largest value of summed p_T^2 in the event

An **event** is formed with the two jets and two leptons with the largest p_T

- Leading (subleading) leptons must have $p_T > 60$ (53) GeV and $|\eta| < 2.4$
- Events need to have at least two leptons with the same flavour (*ee* or $\mu\mu$) and two jets w/ $p_T > 100$ GeV and $|\eta| < 2.0$

After these selections the main SM background contribution comes from Z production

- $m_{ll} > 200$ GeV to avoid contamination from Z production
- $m_{lljj} > 600$ GeV to ensure all kinematic requirements are fully efficient

Analysis regions

Signal regions (SR) : region of phase-space where signal is expected to appear **Control regions (CR)** : estimate contribution of different SM backgrounds:

- Low dilepton mass control regions : study DY+jets
- *Flavour control region:* study $t\bar{t}$ production

Efficiency × *acceptance*

- Fraction of events that pass the selection criteria
- Evaluated using simulated signal events

ATLAS:

• varies from **54**% in (W_R, N_R) high-mass region to \approx **30**% in low-mass region

CMS :

- varies from **57**% at $m_{W_R} > 3000$ GeV to **30**% at $m_{W_R} > 1000$ GeV (electron channel)
- varies from **75**% at $m_{W_R} > 3000$ GeV to **40**% at $m_{W_R} > 1000$ GeV (muon channel)

Background estimation

ATLAS estimation

Reweighting factor

 m_{jj} spectrum of simulated Z+jet(s) events not correctly modelly by simulation samples in CRs (OS channel)

"Fake-factor" method

Method used to estimate background contribution from misidentified leptons ("fakes") (SS channel)

Fake-factor

$$F = \frac{N_T}{N_L}$$

 $N_T = \# \ tight \ leptons$ $N_L = \# \ loose \ leptons$

Number of events with at least 1 misidentified lepton in the analysis region:

$$N^{fake} = [F(N_{TL}^{data} + N_{LT}^{data} - F^2 N_{LL}^{data})] - [F(N_{TL}^{MC} + N_{LT}^{MC} - F^2 N_{LL}^{MC})]^{\text{prompt only}}$$

$CMS\ estimation$

Scale factor (SF)

Used to adjust the normalization of DY+jets background in simulation to match the event coutns in data

<u>Scale factor</u> = ratio of data and simulation events under the Z resonance peak $80 < m_{ll} < 100$ GeV

Low dilepton control region

Flavour control region

Systematic uncertainties

Have experimental and theoretical sources and affect both signal and background distributions

Experimental sources

- \rightarrow Candidate reconstruction (CMS & ATLAS)
- $\rightarrow m_{jj}$ reweighting (ATLAS)
- \rightarrow Electron charge misidentification probability (ATLAS)
- \rightarrow Fake-factor estimation (ATLAS)
- \rightarrow Transfer factor (CMS)

Theoretical sources

ightarrow Choices / models used in the simulations:

- \rightarrow QCD factorisation/renormalisation scales
- \rightarrow PDF set choice & uncertainty
- $\rightarrow \alpha_S$ uncertainty
- \rightarrow Hard-scatter generation
- \rightarrow Amount of initial- and final-state radiation
- \rightarrow Efficiency \times acceptance

Results & conclusions

- No significant deviations from the SM expectations are seen
- Lower limit at 95% CL: 4.4 TeV (electron), 4.5 TeV (muon)
- Most significant excess of $\approx 1.5\sigma$ at $m_{eejj} \approx 3.4$ TeV

 m_{jj} distribution for data & background after the CR+SR fit

Expected & observed 95% CL on $m_{W_R} - m_{N_R}$ plane

Expected & observed 95% CL on $m_{W_R} - m_{N_R}$ plane w/ separation between OS & SS channels

- No significant deviation from SM predictions is observed in any of the SRs
- Most significant local excess of $\approx 2\sigma$ at $m_{eejj} = 3.5 4 \text{ TeV}$
- Lower limit at 95% CL: 4.7 TeV for $0.5 < m_{N_R} < 3.0$ TeV

Conclusions

- → I presented a review of the two most recente papers from CMS and ATLAS concerned with the search of heavy righ-handed W gauge bosons and neutrinos in final states: *lljj* with $l = e, \mu$
- ightarrow These particles are predicted by LRSMs including a see-saw mechanism
- → They can be manifest as excesses over the SM background in distributions of several kinematic variables
- → CMS uses 2016 pp data (\sqrt{s} = 13 TeV, L = 35.9 fb⁻¹) & ATLAS uses 2015-2016 pp data (\sqrt{s} = 13 TeV, L = 36.1 fb⁻¹) and explores the $m_{N_R} > m_{W_R}$ scenario for the 1st time
- \rightarrow No significant deviations from SM expectations are found
- \rightarrow In CMS, a W_R boson with mass up to 4.4 TeV is excluded at 95% CL
- \rightarrow In ATLAS, the excluded region extends to $m_{W_R} = 4.7$ TeV for both Majorana and Dirac neutrinos

Thank you! Questions?

Comparison

	ATLAS	CMS	
Inner detector	Silicon strip + pixel detectors + transition radiation detector	Silicon strip + pixel detectors	 CMS has better resolution for charged particles, photons and electrons
Magnetic field strength and positioning	 2T solenoid between ID & ECAL 3 toroids (0.5-1T) outside MS 	4T solenoid between HCAL and muon chambers	ATLAS has better background rejection
Calorimeter material	Liquid argon (Lar)	Tungstate crystals	Different systematic uncertainties in the results which make the LHC physics
Muon system	Independent muon spectrometer	Gaseous detectors + iron return yoke	exploration more robust

Electrons

Association of a charged particle track with energy deposits in the EM calorimeter (ECAL)

Electrons falling in the transition region between the barrel and endcap sections of the ECAL are rejected $(1.444 < |\eta| < 1.566$ for CMS and $1.37 < |\eta| < 1.52$ for ATLAS)

CMS:

- Electrons must be isolated : p_T sum of all tracks inside cone centered in electron, with R < 0.3 must be below 5 GeV

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

- $E_T > 25 (30)$ GeV in OS (SS) channel
- |η| < 2.47
- Satisfy LHMedium identification criterion
- $|d_0|/\sigma(d_0) < 5 \text{ nm}$
- $|z_0 \sin \theta| < 5 p_T > 400 \text{ MeV}$)
- Satisfy track-based isolation criteria

Muons

Association of a charged particle track with a track in the muon system

CMS:

- At least 1 hit in pixel detector, 6 tracker layer hits and segments in 2 or more muon detector stations
- $|\eta| < 2.4$
- Muons for which p_T sum of tracks originating in a cone around the muon R < 0.3 are removed

 $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

- $p_T > 25 (30)$ GeV in the OS (SS) channel
- $|\eta| < 2.5$
- $|d_0|/\sigma(d_0) < 3$
- $|z_0 \sin \theta| < 5 \text{ nm}$
- Satisfy *Medium* quality criterion

Jets

Reconstructed with anti $-k_T$ algorithm with radius parameter R = 0.4 from energy deposits in clusters of the calorimeter

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

CMS:

- Two jets must have $p_T > 40$ GeV, $|\eta| < 2.4$
- Charged hadrons orginating from pileup interactions removed w/ charged hadron subtraction algorithm
- Neutral hadrons form pileup interactions removed w/ average-area based correction

- Two jets must have $p_T > 20$ GeV, $|\eta| < 2.5$
- Jets with b-hadrons are identified with multivariate tagging algorithm
- Pileup jets removed w/ jet-vertex tagger $(p_T < 60 \text{ GeV}, |\eta| < 2.4)$

Additional selections

To avoid overlap between different particle types

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

CMS:

• $\Delta R > 0.4$ between all leptons and jets

- Electrons are removed if they share track with a muon
- Ambiguities between **electrons** and **jets**:
 - If $\Delta R < 0.2$, jet is removed
 - If $0.2 < \Delta R < 0.4$, electron is removed
- Ambiguities between **muons** and **jets**:
 - If $\Delta R < 0.4$ + less than 3 associated tracks, jet is removed
 - Otherwise, muon is removed

Experimental sources - ATLAS

OS channel

0.4-10%

10-20%

Candidate reconstruction

- Jet & lepton energy and momentum callibration 1.
- Lepton detection & isolation efficiencies 2.
- 3. Trigger efficiency

Estimated by comparing shape difference between simulated & reweighted distribution and that found on data

 m_{ii} reweighting

5-20%

measurement

 $\pm 30\%$ (electron)

Experimental sources - CMS

0.2-29%

Candidate reconstruction

Transfer factor

- 1. Jet & lepton energy and momentum callibration
- 2. Lepton detection & isolation efficiencies
- 3. Trigger efficiency

Estimated by fitting it to a linear function and taking the difference between the values of this function at the high and low m_{jj}

Systematic uncertainties associated with the momentum dependence of the scale factors are negligible

Theoretical sources - CMS

DY+jets estimation

Implemented as a function of m_{lljj} using the PDF4LHC prescription

Evaluated by comparing different MC generators

Estimated by varying parton shower settings

Bayesian estimator

Bayes theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

A : theoretical parameter B : observed data

$\underline{P(param|data)} \propto P(data|param) \times P(param)$

Posterior probability density Likelihood function Prior density

Flat prior : independent of the parameter

Bayesian estimator

 $P(param|data) \propto P(data|param) \times P(param)$

Posterior probability density Likelihood function Prior density

To deal w/ systematic uncertainties, nuisance parameters are introduced in the likelihood function:

$$L(s,b|n_0,m_0) = \frac{e^{-(s+b)}(s+b)^{n_0}}{n_0!} \times \frac{e^{-b}b^{m_0}}{m_0!}$$

Event rate *n* follows Poisson distribution with mean b + ss : signal rate

b : **nuisance parameter** (expected background) m_0 : b estimation

 n_0 : result of the measurement of b + s

 $p(s) = \int p(s,b)db$

Probability density of parameter of interest (signal rate):

Parameter range can be extracted (68%, 95%)

The result of the Bayesian estimation is a **probability density** for the parameter

CMS analysis

Bayesian estimator

- Probability of the observed # events being produced by a combination of signal & background w/ cross section σ, using a flat prior on the signal
- Nuisance parameters w/ log-normal priors
- Cross section **exclusion limit**: upper bound of 95% range of determined posterior density for signal σ

<u>Expected # signal & background events</u>: counting events falling in a particular m_{lljj} window (limits are function of m_{W_R})

Pseudo-experiments are performed, varying all systematic uncertainty sources, each according to a <u>Gaussian distribution</u> (mean = nominal value, width = uncertainty):

- Limit values = mean of pseudo-experiment distribution
- Propagated systematic uncertainty = standard deviation of pseudo-experiment distribution
- Statistical uncertainty = Gamma distribution

$$\rho(n) = \frac{1}{\alpha} \frac{(n/\alpha)^N}{N!} e^{-n/\alpha}$$

n : event rate; $n = \alpha N$ *N*: # pseudo-experiments

Maximum likelihood estimator

- Used to extract parameters of interest by means of a fit performed on data distribution in SRs and CRs
- ATLAS uses **binned** MLE implemented with HistFitter

$$L(\vec{n}, \overrightarrow{\Theta_{0}} | \mu_{sig}, \vec{b}, \vec{\Theta}) = P_{SR} \times P_{CR} \times C_{syst}$$
$$= P(n_{S} | \lambda_{S}(\mu_{sig}, \vec{b}, \vec{\Theta})) \times \prod_{i \in CR} P(n_{i} | \lambda_{i}(\mu_{sig}, \vec{b}, \vec{\Theta})) \times C_{syst}(\overrightarrow{\Theta_{0}}, \vec{\Theta})$$

 C_{syst} is the probability density function inclusing the systematic uncertainties:

$$C_{syst}(\overrightarrow{\Theta_0}, \overrightarrow{\Theta}) = \prod_{j \in S} Gauss(\Theta_0^j - \Theta^j)$$

Number of events in SR (n_s) and CRs (n_i) are obtained from the maximisation of the likelihood function

The result of the MLE estimation is a **value** for the parameters

ATLAS analysis

C_{syst} : Gaussian functions whose widths give the magnitudes of the respective uncertainties

ATLAS analysis

To evaluate the **exclusion limits**, the profile-likelihood ratio is used to test a hypothesized value of μ_{sig} :

$$\lambda(\mu_{sig}) = \frac{L(\mu_{sig}, \widehat{\widehat{\Theta}})}{L(\mu_{sig}, \widehat{\Theta})}$$

Defining
$$q_{\mu_{sig}} = -2 \ln \left(\lambda(\mu_{sig}) \right)$$
 for $\widehat{\mu_{sig}} \leq \mu_{sig}$, the **p-value**:

$$p_{\mu_{sig}} = \int_{q_{\mu_{sig,obs}}}^{\infty} f(q_{\mu_{sig}}|\mu_{sig}) dq_{\mu_{sig}}$$

 $p = 0.05 \rightarrow 95\%$ confidence level (CL)