

Precision Timing with the CMS MTD Barrel Timing Layer for HL-LHC

Tahereh Niknejad LIP Seminar, Feb. 4, 2021

- The challenge: pileup at the HL-LHC
- Detector requirements
- Impact on performance for physics objects and physics analysis
- CMS MIP Timing Detector
 - Endcap Timing Layer
 - Barrel Timing Layer
- Summary

- The challenge: pileup at the HL-LHC
- Detector requirements
- Impact on performance for physics objects and program
- CMS MIP Timing Detector
 - Endcap Timing Layer
 - Barrel Timing Layer \rightarrow LIP is leading the development of the readout electronics
- Summary

integrated luminosity.

For $4000 \, fb^{-1}$

Phase II Detector Requirement

> HL-LHC challenges

- High intant. luminosity $> 5 7.5 \ 10^{34} \ cm^{-2} \ s^{-1}$
 - \rightarrow High pileup 140-200 for every bunch crossing (x5 higher vertex density)
- High integrated luminosity target of $3000 4000 fb^{-1}$

 \rightarrow High irradiation

> Phase II Detector Upgrade: Significant upgrades of ATLAS and CMS for HL-LHC conditions

- Radiation hardness
- Mitigate physics impact of high pileup
- High trigger and readout rate

Real-life event with HL-LHC-like pileup from special run in 2016 with individual high intensity bunches LIP seminar - Tahereh Niknejad

Time Tagging at the HL-HC

- Vertices at the HL-LHC have a distribution in time with ~ 180 ps rms
- The MIP timing Detector (MTD) allows timing of charged particles with a precision of 30-50 ps

Beam spot: time spread of 180 - 200 ps, largely uncorrelated with the spread in z

- > 4D vertex reconstruction
 - Disentangle overlapping vertices in space with precision timing.

Effect of Precision Timing on Track-PV Association

• Timing significantly reduces the "effective" vertex line density

- 200 PU equivalent to current LHC PU (~50 PU)
- Recover performance in several observables

Improving Physics Object Performance

- Time information improves the quality of the reconstruction of physics objects:
 - Track time association allows to remove spurious pile-up tracks from reconstruction
 - Impact on fake jet reconstruction, lepton isolation and ID, b-tagging, pt_{miss} resolution
 - Also adding the possibility to perform Time-of-Flight particle identification (important in b-physics and heavy-ion collisions)

Impact on Physics Analysis

- Improved object reconstruction has an impact on the reach of physics analysis
 - Example: efficiency of HH \rightarrow bb $\gamma\gamma$ improved more than 20% due to better RECO
 - Luminosity of HH channel is increased by ~20-26%
- Unique physics opportunities profiting from the time information
 - Example: Heavy Stable Charged Particles → Improved discrimination through the measurement of HSCP speed

Channel	No MTD	<σ _t > <mark>35 ps</mark>	<σ _t > 50 ps
bbbb	0.89	0.95	0.94
bbтт	1.3	1.58	1.48
bbyy	1.7	1.85	1.83
bbWW	0.53	0.579	0.576
bbZZ	0.38	0.423	0.418
Combined	2.4	2.71	2.63
Luminosity gain	-	+26%	+20%

Summary of CMS Upgrade for HL-LHC

 \rightarrow Upgraded calorimeters can provide precision timing of electromagnetic showers with a precision of 30-50 ps above the p_T of a few GeV

MIP Timing Detector (MTD)

MIP Timing Detector

MTD Timeline

	2017 2018				2019				2020			2021			2022			2023				2024				2025				2026									
MILESTONES TIMELINE	Q1 0	22 Q	3 Q	4 0	21	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 (Q2 Q3	3 Q4
					TD	DR S	ubn	nissi	on	•								•	BTL	EDR			÷ E	TL E	DR														
Endcap Timing Layer	Desig	zn - C	Dem	о.						Eng	inee	ring	; - Pr	roto	typi	ng					Pre	-pro	oduc	tion		Pro	oduc	tion	& ir	nteg	ratio	on	Ins	tall.					
Barrel Timing Layer	Desig	zn - C	Dem	о.					Eng	;in.	Pro	to.	Pre	-pro	d.				Pro	duc	tion	and	l inte	egra	tion		Ins	tall.		1	///	//	Tra	cker	Insta	allat	ion	Co	mm.

- > The project is approved!
 - TDR is public:

https://cds.cern.ch/record/2667167/files/CMS-TDR-020.pdf

- > Production:
 - BTL in 2022-2023
 - ETL in 2023-2024

> Installation:

- BTL in 2023
- ETL in 2025
- 2026 commissioning

→ BTL has a very tight schedule: last detector to be approved, first to be installed!

MTD

Endcap Timing Layer (ETL)

Endcap Timing Layer Layout

- End-cap Timing Layer(ETL): two disks system
- Sensor modules on two sides of each support disk.
- Low-Gain Avalanche Detector (LGAD) sensors
 - Sensors are organized in array of 16x32 with a size of 21.2×42 mm² (1.3×1.3 mm² pixels)
- Readout electronics ASIC: ETROC (ETL ReadOut Chip)
 - ETROC bump-bonded to LGAD, To handle 16x16 pixels, Each 1.3 mm x 1.3 mm
 - Each channel consists of a preamplifier, a discriminator, a TDC used to digitize the TOA (time of arrival) and TOT (time over threshold) measurements

Endcap Timing Layer: Module design

- The Ultra Fast Silicon Detectors (UFSD) can be achieve with an additional gain layer (LGAD) are optimized for timing
 - Common CMS and ATLAS development
 - Moderate internal gain (10-20)
 - $\circ~$ Large signals, but low noise
 - Very high radiation tolerance, sufficient for the endcap fluence (2x10¹⁵ neq/cm²)
 - Very good timing response:35 ps resolution at the beginning of lifetime, 45 ps resolution by the end of lifetime

MTD

Barrel Timing Layer (BTL)

Layout of the Barrel Timing Layer

- Detector mounted on the inner surface of the Tracker Support Tube (TST)
- Single layer, 40 mm thick, segmented into 72 trays
- Each tray consists of 6 Readout Units with 24 modules each
- Sensor module : 16 LYSO bars, 2 SiPM arrays

- Charged Particle Scintillation Light SiPM 1 LYSO Vertex Extensive testbeam and test-bench campaign to Low energy photons (~420nm) characterize performance of various **MIP** particles wrappings/SiPMs/glues timing extraction methods Scintillator **Photodetector** (LSO Ce) (SiPM) LIP seminar - Tahereh Niknejad
- 3x3x57 mm³ LYSO:Ce crystal bars with two 3x3 mm² SiPMs glued at each end
 - Passing charged particles emit scintillation light Ο collected by each SiPM
- Two measurements per particle

BTL Sensor Design

- Eliminates impact point dependence Ο
- $\sqrt{2}$ improvement in time resolution
- BTL will use crystal matrices of 16 bars
 - Thin layers of wrapping between bars in matrix to Ο minimize light sharing
- Electronic signal Readout electronics

Time Resolution Drivers in BTL

$$\sigma_{t}^{BTL} = \sigma_{t}^{clock} \oplus \sigma_{t}^{digi} \oplus \sigma_{t}^{ele} \bigoplus \sigma_{t}^{phot} \oplus \sigma_{t}^{DCR}$$

contribution from sensors

 The time resolution in BTL sensors is driven by the photon signal (S) and the noise term (N) due to radiation induced dark counts in the SiPM

→ Red curve assumes an ideal DCR noise cancellation. The DCR cancellation method will be discussed later 2/4/21
2/4/21
2/4/21

LYSO:Ce crystal arrays

LYSO Crystal Arrays Specification

22

- Excellent radiation tolerance
- Dense (>7.1 g/cm3): a MIP deposits ~4.2 MeV including impact angle (0.86 MeV/mm)
- Bright: light yield (LY) ~40k photons/MeV.
- $\circ~$ Fast rise time 100 ps and decay time ~40 ns

0.08 mm ESR

reflective foils

Crystal Array Characterization

Irradiation tests

 Average light output and time resolution of 16 crystal bars within an array before and after irradiation to full ionizing dose (including 1.5x safety margin)

• Characterization of crystals at -30°C

- LYSO:Ce scintillation behaviour vs temperature already studied in literature: time resolution unchanged (decrease of light yield compensated by faster decay time)
- First results show overall performance gain of few percent when decreasing temperature from 20° C to -30° C

Silicon Photomultiplier (SiPM) arrays

SiPM Arrays Specification

Silicon Photomultipliers as photo sensors

- Compact, fast (single photon resolution of 100 ps), insensitive to magnetic fields
- Good radiation tolerance
- Optimal SiPM cell size: 15 µm, balance between radiation tolerance and photon detection efficiency
- Good (20-40%) Photon Detection Efficiency (PDE) at 420 nm
- Gain: 1.5 4×10⁵
- Drawback: Dark current noise due to radiation damage

SiPM Arrays Specification

Silicon Photomultipliers as photo sensors

- Compact, fast (single photon resolution of 100 ps), insensitive to magnetic fields
- Good radiation tolerance
- Optimal SiPM cell size: 15 µm, balance between radiation tolerance and photon detection efficiency
- Good (20-40%) Photon Detection Efficiency (PDE) at 420 nm

End of life condition

- Gain: 1.5 4×10⁵
- Drawback: Dark current noise due to radiation damage

0	Integrated luminosity (fb-1)	Number of p.e.	SiPM gain	DCR (GHz)
1	0	9500	3.8 × 10 ⁵	0
	500	9000	2.9 × 10 ⁵	20
	1000	8000	2.5 × 10 ⁵	30
	2000	7000	1.9 × 10 ⁵	45
	3000	6000	1.5 × 10 ⁵	55

HDR2 SiPM parameters along BTL life

Mitigating SiPM Radiation Damage

- DCR noise mitigation:
 - $_{\odot}$ Lowering temperature of SiPM operation
 - CO2 cooling to -35 °C (DCR decreases by a factor 1.8 every 10 °C)
 - Additional cooling with ThermoElectric Coolers (TECs)
 - Annealing of SiPMs at 15-20°C during shutdowns
 - Reducing DCR
 - DCR decreases faster when lowering temperature (1.8 \rightarrow 2.1x / 10 °C)
 - Dedicated noise cancelation circuit in front-end ASIC

Measurements after irradiation to full fluence (2×10¹⁴ neq/cm²) showed larger DCR than extrapolations from 2×10¹² used in the TDR.

Thermoelectric Cooler Option

- TECs can provide additional handle in lowering BTL operating temperature during operation and to enable better thermal annealing during shutdowns
 - Devices successfully tested under irradiation to full fluence and thermal cycles
- TECs (though several details need to be finalised) can provide:
 - \circ Additional cooling around ΔT = -10°C,
 - Annealing up to +40-50°C, possibility for annealing during beam operations
- TECs allows to almost recover TDR expectations

LIP seminar - Tahereh Niknejad

BTL Sensor Performance in Test Beam

- Extensive R&D campaigns to prove target resolution
- Bars read-out by SiPMs at both ends → two different times per channel

 $t_{ave} = (t_{left} + t_{right})/2$

- Time is sensitive to the light propagation along bar
- Uniform time response and resolution across sensor area
- Achieved 30 ps time resolution per BTL sensor before irradiation

Readout Electronics

BTL Readout Electronics

- Readout electronics ASIC: TOFHIR (Time Of Flight HIgh Rate)
- Each board has 6 ASICs
 - each ASIC 32 independent channels that reads 32 SiPMS

Front-End Requirements

- MIP signal
 - Average light signal: 10-6 k p.e.
 - MIP rate: 2.5 M hit/s/channel
- Timing measurement
 - Timing given by the arrival of the first \sim 50 p.e.
 - Electronics jitter ~ 20 ps
- Amplitude measurement
 - Charge integration and ToT
 - Accuracy <5% for time walk correction
- Dark counts and out-of-time pileup
 - Cope with large increase of SiPM dark count due to radiation

TOFHIR Prototyping

TOFHIR ASIC is developed by PETsys electronics in collaboration with LIP

- TOFHIR1 (UMC 110 nm): received in 2019, enabled system level testing
 - Based on the ASIC developed for TOF-PET at LIP
- TOFHIR2 (TSMC 130 nm): new frontend design, DCR noise cancellation circuit
 - o TOFHIR2A
 - Tests started on 15 July 2020
 - TOFHIR2X
 - Improved DCR cancelation and current discriminator
 - Submitted in November 2020
 - TOFHIR2B
 - Improved SEU protection
 - TMR protection of clock tree
 - MPW submission Apr 2021

TOFHIR2 Channel

Challenges:

- Reduce impact of DCR noise and pileup
- Cope with high rate (2.5 MHz MIP + 5 MHz low E hits/channel)
- Handle the variation in dynamic range variation along detector life time
- Power budget 15mW/channel

Features:

- Branches: T, E and Q
- Three leading edge discriminators
- Two TDCs, one QDC sharing 40 MHz SAR ADC
- Trigger logic

gate

•

2mA

DCR Noise cancellation in TOFHIR

Method:

- Inverted and delayed pulse added to the original pulse, •
 - Delay line is approximated by a RC net (200-500 ps)
 - Short output pulse (< 25 ns)
 - Noise and baseline fluctuations are mitigated

18.0

15.0

13.0

11.0

(¥ 19.0

₹ 7.0

5.0

3.0

1.0

-1.0

0.0

DCR Noise cancellation in TOFHIR

Method:

- Inverted and delayed pulse added to the original pulse,
 - Delay line is approximated by a RC net (200-500 ps)
 - Short output pulse (< 25 ns)
 - Noise and baseline fluctuations are mitigated

Simulation of time resolution:

• TOFHIR2X

2/4/21

- End of Life conditions
 - Dark Count Rare: 55 GHz
 - Double readout of LYSO bar
 - MIP pulses with 6000 p.e.
 - SiPM gain: 1.5x10⁵

σ_{time}	$= \frac{\sigma_{noise}}{slew rate}$	

	SiPM output current	DCR module output current
Slew rate (A/ms)	135.9	9.93
Noise r.m.s (A)	2.45e-5	5.12e-7
$\sigma_{ m noise}$ / SR (ps)	180	52

\rightarrow Time resolution is improved by a factor 3.5

TOFHIR Performance

TOFHIR Performance

TOFHIR 1

Integration and readout test of the BTL system, using the first version of the electronics (**RUproto1**)

- Test the TOFHIR_v1 ASICs mounted on the FE board
- Read the FE boards through the Concentrator Card, powered through the Power Converter boards
- Acquire data through the prototype DAQ system

Goals: validate the full acquisition chain and assess the impact of the system noise in time resolution

Readout Unit Prototype 1

Experimental Setup

Coincidence Time Measurement in Different Scenarios

Laser pulse (ToT 90 ns) with similar slew rate as LYSO pulse

Same-ASIC channels

Pairs of channels in different ASICs on different FE boards

- The results indicate that the system (FE + CC + PCC) is working well
 - $_{\odot}$ Coincidence time resolutions below 40ps are measured in all conditions
 - 40 ps CTR \rightarrow 28 ps on the single channel \rightarrow 20 ps on the bar resolution
- The system noise does not deteriorate the intrinsic performance significantly

TOFHIR Performance

TOFHIR 2

Expected Time Resolution

lifa

- Time resolution at discriminator output
 - LYSO photo-statistics included
 - TDC digitization added (20 ps)
 - SiPM jitter included (100 ps)
 - SiPM cross-talk included

Integrated luminosity (fb-1)	Number of p.e.	SiPM gain	DCR (GHz)
0	9500	3.8 × 10 ⁵	0
500	9000	2.9 × 10 ⁵	20
1000	8000	2.5 × 10 ⁵	30
2000	7000	1.9 × 10 ⁵	45
3000	6000	1.5 × 10 ⁵	55

HDP2 SiPM narameters along BTL

• HDR2 SiPM (3.8 x10⁵ gain) triggered by picosecond pulsed laser

- Contribution of electronics to time resolution is expected to be the same for a given slew rate for either laser or LYSO.
- DCR is emulated with LED light
 - LED is calibrated to yield SiPM current equivalent to DCR

Radiation Test of TOFHIR2A (TID and SEU)

X-ray Irradiation facility at CERN

- Max expected dose in BTL is 2.9 Mrad
- ASIC was irradiated up to 7 Mrad
- No sizable effects up to 7 Mrad on the frontend amplifiers, TDC and QDC.

Heavy Ion Facility (HIF) at Louvain-la-Neuve

- Facility to test the response of electronic components to single event effects (SEE).
- ASIC was irradiated with different ions covering a wide range of LET and ranges
- We validated that TMR in the configuration registers is operating as
 iad expected 47

- Large Hadron Collider will undergo a High Luminosity upgrade
 - Aims to deliver ten times more integrated luminosity
 - But five times more pileup interactions
- CMS phase-2 upgrade will include a new MIP timing detector with a time resolution of 30-60 ps to mitigate harsh pile-up condition at HL-LHC
 - Expand CMS HL-LHC physics reach: enhancement of physics object reconstruction, open up new territory in CMS Heavy Ion Physics and long-lived particle search
- LIP is leading the development of the BTL readout electronics
- BTL and ETL are rapidly progressing towards engineering solutions
 - Challenges to achieve TDR performance being addressed.

Backup

Evolution of SiPM Operating Parameters

