The CMS Precision Proton Spectrometer (PPS) Past, Present, and Future

Jonathan Hollar (LIP) LIP Seminar, Jan. 21, 2021

1

PPS: The Precision Proton Spectrometer

Detector package

ing very close to beam (~2 mm) vable "Roman els in every LHC

Physics of PPS

٠

- In a special class of LHC collisions, the protons stay intact and scatter in the far forward direction
 - γγ or multiple-gluon ("Pomeron") exchanges

Detecting the protons provides a new powerful tool to study $\gamma\gamma$ collisions at hundreds of GeV to TeV scales

Operation at high luminosity => sensitivity to a wide range of rare and new processes

	Electroweak and	
Standard Model Physics	indirect new physics	Direct new physics searches
γγ→∥ Dijet production	Anomalous couplings in $\gamma\gamma \rightarrow$ gauge bosons (<i>WW</i> , <i>ZZ</i> , $\gamma\gamma$), $\gamma\gamma \rightarrow$ top quarks,	Resonances, missing mass searches
,,,	γγ→tau leptons…	3

Proton kinematics: $x \quad \xi = 1 - \frac{|\mathbf{p}_f|}{|\mathbf{p}_i|} \quad M_X = \sqrt{s\xi_1\xi_2}$ Proton reconstruction (ξ_1) in space...

For signal events, kinematics are closed

- ξ values are related to the invariant mass and rapidity of the central system "X"
- M_x acceptance roughly 300-2000 GeV

Protons are bent through the LHC accelerator magnetic fields, and arrive at the

detect	ors	RP	RP	RP 210	IP5 ►
• Det	 ■ RP ECCEPTORS far 	timing Measure >	near k,y position	far	
					RP
					210

- Then "reverse engineer" to find the fractional momentum loss (ξ) and 4-momentum transfer squared (t) of the proton at the collision point
- Requires very detailed understanding of LHC magnetic fields ("optics"), and alignment of the Roman Pots

and in time

- A major background is due to "pileup" protons, coming from other collisions in the same LHC bunch crossing
 - Pileup as large as 50-60 in LHC Run 2
- Mitigated by precisely measuring the arrival time of the protons
 - For signal, ∆t of the 2 prot should be correlated with t longitudinal vertex position measured in the central detector

The past: PPS and LHC Run 2

From concept to reality

- Began as a joint project of the CMS and TOTEM collaborations ("CT-PPS") in 2014
 - Fully integrated into CMS by 2018 (now just "PPS")
- Reuse of horizontal Roman Pot and tunnel infrastructure installed originally for TOTEM low-luminosity runs
- Major effort to prepare detectors, electronics, DAQ, for datataking already in 2016

TECHNICAL DESIGN REPORT FOR CMS-TOTEM PRECISION PROTON SPECTROMETER

From concept to reality - LIP efforts

Leading contribution from the LIP-CMS group on many fronts (not all listed here)

- Project management
- Coordination of timing detectors/electronics, CMS DAQ integration, detector operations
- Electronics design, firmware, online software/HLT
- 24-hour "on-call expert" and testbeam shifts
- Calibration/detector performance studies

LIP lab @CERN B20: Pre-installation tests of electronics chain

LIP Contributions

- Current and former group members
 - Project manager: **J. Varela** (2014-2018)
 - Deputy Project manager: **J. Hollar** (2018-present)
 - Proton Physics Object Group convenor: K. Shchelina (2019-present)
 - Timing detector coordinator: **M. Gallinaro** (2014-2018)
 - DAQ and detector operations coordinator: J. Hollar (2016-2018)
 - Electronics/firmware/DAQ/online software: J. Carlos Da Silva, C. Carpinteiro, L. Llorett, B. Galinhas
 - Proton reconstruction, High-level trigger, tracking performance: K. Shchelina, M. Araujo, M. Pisano,
 C. Da Cruz E Silva
 - Alignment, timing detector testbeams: G. Strong, A. Toldayev
 - Detector on-call shifts: K. Shchelina, C. Carpinteiro , L. Llorett, J. Hollar
 - · Physics analyses: K. Shchelina, M. Gallinaro, M. Pisano, H. Silva, B. Ribeiro, L. Llorett, P. Silva

RP Timing (216 m)

203.8 m 212.6 m

LHC Run 2: Evolving layout and Detectors

Small detectors, relatively fast to replace => variety of technologies used during LHC Run 2

- Two tracking stations/arm
 - Initially all Si-strips in 2016, inherited from TOTEM
 - By 2018, moved to all 3D Si-pixel tracking (technology considered for CMS HL-LHC inner tracker)
 - One timing station/arm in 2017+2018
 - Mainly synthetic diamonds (+ some with fast silicon low gain avalanche)

different detector configurations each year!

Timing: Diamonds in 2017-2018

L P CMS

RP Tracking (220 m)

Run 2 PPS data summary

- >100fb⁻¹ recorded with PPS Roman Pots inserted, and taking data together with the rest of CMS
 - Almost 75% of the Run 2 total recorded by CMS alone
 - (final number for analysis depends on exact quality criteria - presence of timing detectors, etc.)
- No negative impacts on LHC operations from inserting Roman Pots in almost every fill (beam dumps, luminosity limitations, etc.)

•

•

No major problems for CMS data-taking

٠

(An aside: special low-pileup/high-β* runs)

•

- Historically CMS+TOTEM (Roman Pots) also combined data from special lowpileup/high $\beta^*(90m)$ optics runs, dating back to 2012
- Even before a common DAQ/software, by exchanging trigger signals and matching events offline (not easy don't try this at home!)
- Technically not considered part of PPS, though large overlap in people and increasing commonality in other areas
 - CMS+TOTEM high-β* runs now use same integrated DAQ/local reco SW developed for PPS
 - PPS uses the TOTEM vertical Roman Pots for alignment with elastic scattering events
- I will mostly focus on the high-luminosity PPS program, but will briefly mention some new results with forward protons from the special runs

Physics results with forward protons

Physics of special runs: single-diffractive dijets

- First LHC measurement of hard-scale diffraction with a leading proton
 - 8 TeV data from 2012/Run 1, before DAQ integration!
- "t" (proton 4-momentum transfer) slope is consistent with measurements from HERA
- Cross sections far (>10x) below predictions of HERA "diffractive PDF's"
 - Consistent with similar effect + energy dependence seen at Tevatron:
 - Interpreted in terms of soft rescattering/"survival probability" effects between protons
 - Pythia8 "dynamic gap" model reproduces this with no ad hoc rescaling

Eur. Phys. J. C 80, 1164 (2020) [arXiv:2002.12146]

Physics of special runs: jet-gap-jet

- Study of hard color singlet exchange with and without a proton at 13 TeV (2015 data)
 - Sensitive to BFKL dynamics
- Excess of events with no activity between jets is observed both with and without a proton
 - Fraction of events with a central rapidity gap is observed to be almost 3x larger when a proton is detected
 - Interpreted in terms of reduced spectator parton activity
 - First measurement of the central gap fraction with a leading proton

jet

Physics of high-luminosity/PPS: $\gamma\gamma \rightarrow II$ with single proton tags (2016)

- Single arm measurement based on <10fb⁻¹ of 2016 data
- Backgrounds estimated by extrapolating from Z control regions, and by event mixing
- Combination of µµ and ee channels
 - Signal appears as 5σ excess of events along the diagonal, where dilepton and proton kinematics match
 - => Observation of γγ interactions with a tagged proton at EWK scales
 - Note: results also from ATLAS-AFP (*Phys.Rev.Lett.* 125 (2020) 26, 261801)

JHEP 07 (2018) 153 [1803.04496]

ξ(l'†)

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.04

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ξ(RP)

m(//)>110GeV

0 12 0 14

5 0.18 0.2 ξ(RP)

$\gamma\gamma \rightarrow \mu\mu$ with single proton tags: Prospects for full Run 2 data (2017+2018)

Events

30

25

- Single-arm $\gamma\gamma \rightarrow \mu\mu$ events are now used as a control sample for ξ reconstruction in 2017+2018 data
- New ("multi-RP") reconstruction option, with full reco of proton scattering angles/t distribution
 - Limited low- ξ acceptance, but improved high-ξ resolution
 - "single-RP" reconstruction retained for analyses that need to access lower ξ values
 - Correlation peak widths/resolutions are well-reproduced by the simulation
 - Small offsets are consistent with independently estimated scale systematics

CERN-CMS-DP-2020-047.

Physics of high-luminosity/PPS: Search for $\gamma\gamma \rightarrow \gamma\gamma$

- $\gamma\gamma \rightarrow \gamma\gamma$ scattering is sensitive to a wide range of BSM effects
 - Non-resonant: Anomalous Quartic Gauge Couplings, exotic particles at 1-loop level...
 - Resonances: Axion-like particles, others with large couplings to photons

- Large amount of interest surrounding the 750 GeV "diphoton bump" from ATLAS+CMS in ~2015 (not confirmed with more data)
 - Motivation for starting PPS physics program earlier than planned
 - Complementary to "light-by-light" scattering studies in Heavy Ion collisions (PPS probes higher-energy/TeV scale yy collisions)

Physics of high-luminosity/PPS: Search for $\gamma\gamma \rightarrow \gamma\gamma$

- Selection mainly adopted from CMS H→γγ analysis and CMS-PPS dilepton analysis
- Backgrounds estimated from MC constrained in control regions, plus event-mixing of random pileup-like protons
- After diproton-diphoton matching: ~1 background event expected, 0 events observed

• First direct collider limits on the anomalous quartic 4-photon couplings

$$\begin{split} |\zeta_1| &< 3.7 \times 10^{-13} \text{ GeV}^{-4} \quad (\zeta_2 = 0) \\ |\zeta_2| &< 7.7 \times 10^{-13} \text{ GeV}^{-4} \quad (\zeta_1 = 0) \end{split}$$

CMS-PAS-EXO-18-014

Prospects for Run 2 physics

Most of the available Run 2 data has not yet been used for physics

- Existing PPS/high-lumi physics analyses use only ~10 fb⁻¹ from first part of 2016
 - Additional >95 fb⁻¹ recorded in the rest of 2016+2017+2018
 - With improved tracking detectors in 2017+2018
 - With timing detectors in majority of 2017+2018 not yet used for physics
- Results from high- β^* /low-PU special runs use data from 2012+2015
 - ~10x more luminosity recorded in 2018 high- β^* /low-PU special run

Physics prospects for 2017+2018 PPS data: timing

- Timing information available in majority of 2017+2018 data
 - Best calibrations/settings for the last 40fb⁻¹ of 2018
- Low pileup (µ~1) 2018 data is used to validate the proton timing performance in Central Diffractive/"Double Pomeron Exchange"-like events
 - Based on comparison of central CMS vertex position vs. Δt of protons in PPS
 - Strong correlation between z(CMS) and Δt(PPS) visible in events with 1 vertex and protons on both arms
 - No correlation present in event-mixing samples (used to model pileup backgrounds)

Physics prospects for 2017+2018 PPS data: timing

The present: Preparations for LHC Run 3

Run 3

٠

٠

٠

Most PPS analyses will be statistics-limited, even with full Run 2 data

PPS will continue as a standard CMS sub-detector throughout LHC Run 3, beginning in 2021 2022

- Opportunity to continue analyses with improved/stable detector conditions
 - Building on lessons from Run 2, plus improvements for Run 3
 - Detectors: sensors/electronics (following pages)
 - Automated calibration procedures
 - High-level triggers
 - Improved/GEANT4 simulations
- Expect ~300fb⁻¹ collected by the end of Run 3

Run 3: Tracking

Generally very good experience with 3D pixels in Run 2, and strong synergy with CMS central pixel detectors

- Only real issue: highly non-uniform irradiation near the beam leads to some time drift/loss of efficiency from the Readout Chip
 - In Run 2 this was mitigated by manually shifting the pixel detector vertically, during a technical stop
- For Run 3

٠

٠

- New sensors produced
- Small motor system will be installed allowing vertical movements to be performed remotely

Run 3: Timing (I)

Much more challenging to commission and use timing/diamond detectors

- Reasonable efficiency maintained from beginning to end of 2018 run
- Expected 50ps/plane not yet reached
 - Moderate loss of timing resolution, from early to late 2018 data

1 track in both pixel tracker stations & 4 diamond planes & 1 pad per plane

Extensive testbeam campaign was carried out after Run 2, using the irradiated diamonds

 With optimized LV/HV settings and ideal readout: no significant loss of efficiency, still close to 50ps resolution

Run 3: Timing (II)

Major campaign to optimize timing for Run 3

- Aim approach the 50ps/plane (with 8 planes per arm) obtained in testbeams
- Brute force improvements
- Instrument a 2nd RP station for timing: done
- All "double-diamond" sensors (2 diamonds connected to each amplification channel), including new production
 - Equivalent increase from ~6 to ~16 timing measurements per track
- Electronics improvements
- Revised hybrid and discriminator board designs
- Remote LV control
- Monitoring/spy channels of signal shapes before digitization

Migration of the Roman Pots, in their natural environment

The future: LHC Run 4 and beyond

After Run 3?

- After Run 3, all existing Roman Pot installations must be removed to allow reconfiguration for HL-LHC
- In 2018, began exploring possibilities for HL-LHC in CMS, 1 LHC machine experts

• 4 possible locations identified in the HL-LHC tunnel

- "Traditional" (Run 2-like) Roman Pots at 196, 220, 234m from IP5
- More challenging region at 420m (devices must be *between* the LHC beampipes, and between cryo-cooled regions)

Suitability of these locations?

Acceptance: HL-LHC vs. Run 2/3

Impact on physics

Many final states reviewed, at the level of simple generator-level studies or external phenomenological studies

 Essentially all physics processes benefit from increased luminosity and/or increased acceptance: example for γγ→WW with anomalous couplings

Impact on physics: very low mass acceptance with 420m

Red: with 420m. Green: without 420m

- Even without 420m station, improved low mass acceptance compared to Run 2/3 helps with most SM processes
 - Addition of 420m further helps by reducing minimum from ~130 GeV to ~50 GeV
 - Unique feature of the 420m location: only possibility for detecting exclusive production of 125 GeV SM Higgs (pp→pHp)

420m: Everything old is new again

FERMILAB-FN-0825-E

June 2, 2008

The 420m region was studied in detail by the FP420 R&D collaboration (joint effort of CMS+ATLAS) 12 years ago

- Final report published in JINST (176 pages, >275 citations) but the project was not pursued
- Early studies of mechanics, machine integration, cost, to be revived

JINST 4 (2009) T10001

The FP420 R&D Project: Higgs and New Physics with forward protons at the LHC

M. G. Albrow¹, R. B. Appleby², M. Arneodo³, G. Atoian⁴, R. Barlow², W. Beaumont⁵, L. Bonnet⁶, A. Brandt⁷, P. Bussey⁸, C. Buttar⁸, J. M. Butterworth⁹, M. Carter¹⁰, B.E. Cox^{2,*}, D. Dattola¹¹, C. Da Via¹², J. de Favereau⁶, D. d'Enterria¹³, P. De Remigis¹¹, A. De Roeck^{13,5,*}, E.A. De Wolf⁵, P. Duarte^{7,†}, J. R. Ellis¹³, B. Florins⁶, J. R. Forshaw¹², J. Freestone¹², K. Goulianos¹⁴, J. Gronberg¹⁵, M. Grothe¹⁶, J. F. Gunion¹⁷, J. Hasi¹², S. Heinemeyer¹⁸, J. J. Hollar¹⁵, S. Houston⁸, V. Issakov⁴, R. M. Jones², M. Kelly¹², C. Kenney¹⁹, V.A. Khoze²⁰, S. Kolya¹², N. Konstantinidis⁹, H. Kowalski²¹, F. Lanni²², H.E. Larsen²³, S.-L. Liu²⁴, A. Lyapine⁹, F.K. Loebinger¹², R. Marshall¹², A. D. Martin²⁰, J. Monk⁹, I. Nasteva¹², P. Nemegeer⁶, M. M. Obertino³, R. Orava²⁵, V. O'Shea⁸, A. Pal⁷, S. Parker¹⁹, J. Pater¹², A.-L. Perrot²⁶, T. Pierzchala⁶, A. D. Pilkington¹², J. Pinfold²⁴, K. Piotrzkowski⁶, W. Plano¹², A. Poblaguev⁴, V. Popov²⁷, K. M. Potter², V. Radeka²², S. Rescia²², F. Roncarolo², A. Rostovtsev²⁷, X. Rouby⁶, M. Ruspa³, M.G. Ryskin²⁰, A. Santoro²⁸, N. Schul⁶, G. Sellers², A. Solano²³, S. Spivey⁷, WJ. Stirling²⁰, D. Swoboda²⁶, M. Tasevsky²⁹, R. Thompson¹², T. Tsang²², P. Van Mecheler⁵, A. Vilela Pereira²³, S.J. Watts¹², M. R. M. Warren⁹, G. Weiglein²⁰, T. Wengler¹², S.N. White²², B. Winter¹⁰, Y. Yao²⁴, D. Zaborov²⁷, A. Zampieri¹¹, M. Zeller⁴, A. Zhokin^{5,27}

FP420 R&D Collaboration

 ¹Fermilab, ²University of Manchester and the Cockcroft Institute, ³Università del Piemonte Orientale, Novara, and INFN, Torino, ⁴Yale University, ⁵Universiteit Antwerpen, ⁶Université Catholique de Louvain, ⁷University of Texas at Arlington, ⁸University of Glasgow, ⁹University College London (UCL), ¹⁰Mullard Space Science Laboratory (UCL), ¹¹INFN Torino, ¹²University of Manchester, ¹³CERN, PH Department, ¹⁴Rockefeller University, NY, ¹⁵Lawrence Livermore National Laboratory (LLNL), ¹⁶University of Wisconsin, Madison, ¹⁷UC Davis, ¹⁸IFCA (CSIC-UC, Santander), ¹⁹Molecular Biology Consortium, Stanford University, ²⁰Institute for Particle Physics Phenomenology, Durham, ²¹DESY, ²²Brookhaven National Lab (BNL), ²³Università di Torino and INFN, Torino, ²⁴University of Alberta, ²⁵Helsinki Institute of Physics, ²⁶CERN, TS/LEA, ²⁷ITEP Moscow, ²⁸Universidade do Estado do Rio De Janeiro (UERJ), ²⁹Institute of Physics, Prague

Distributed nature of PPS detectors allows staged installation

 Possible approach: 3 well-understood Roman Pot locations target LHC Long Shutdown 3 (2025-2027), more ambitious 420m station targets LS4 (2031-2032)

2 Jun 2008

arXiv:0806.0302v1 [hep-ex]

Detectors: synergies with central CMS upgrades

- PPS pixel tracking detectors are already strongly aligned with the Phase-II tracker upgrade
- Several options for timing detectors: diamonds (current PPS), LGAD (CMS MTD-ETL upgrade)

Figure 47: Time resolution required per spectrometer arm to resolve the mean vertex distance at a position z (in units of the longitudinal vertex width σ_v) from the IP centre. Four different pileup multiplicities are shown: $\mu = 50$ (LHC Run 2), 100, 140 (nominal HL-LHC performance), and 200 (ultimate HL-LHC performance). Left: for standalone PPS timing. Right: combining the PPS timing with the MTD system, selecting a time-slice of ± 50 ps around the central bunch crossing time.

- In Run 2/3, the **difference** of PPS proton times is correlated with the vertex position in the CMS Si-tracker
- In Run 4+, CMS will have precise timing in the central region, thanks to the MTD upgrade (LIP leadership in electronics - see Feb. 4 LIP seminar!)
- The absolute/sum of proton times in PPS can be correlated with the vertex time measured in MTD
- PPS could achieve the same level of vertex separation with less stringent timing requirements, thanks to central timing from the MTD

- HL-LHC studies described in a detailed (90 page) "Expression of Interest", reviewed internally throughout 2020
- Approved by CMS just before Christmas
- Initial presentations and discussion of space reservations started with HL-LHC coordination and LHCC
 - Organizing next steps towards R&D and a TDR

gives access to final states otherwise not visible. CEP allows unique sensitivity to physics beyond the standard model, e.g. in the search for anomalous quartic gauge couplings, axion-like particles, and in

general new resonances.

The CMS Collaboration intends to pursue the study of central exclusive production (CEP) events, $pp \rightarrow pXp$, at the High-Luminosity LHC (HL-LHC) by means of a new near-beam proton spectrometer.

Summary (I): LHC Run 2/3

٠

٠

٠

PPS began in 2014, and successfully recorded >100fb⁻¹ of data in Run 2 from 2016-2018

- First results from Run 2 on SM processes and BSM searches (plus QCD physics from special CMS+TOTEM runs)
- A factor ~10x more luminosity now available, with good proton reconstruction
- For Run 3, continue operations with improvements based on Run 2 experience
 - Remote movement of pixels to mitigate non-uniform irradiation of readout chips
 - Large effort to improve timing performance: additional timing station, modified front-end electronics
 - LIP has been one of the leading institutes in the project since the beginning, and contributed to almost all aspects (hardware/firmware/software/ operations/trigger/calibrations/reconstruction/physics...)

Summary (II): Upgrade

٠

- Beyond Run 3: all existing Roman Pots will be removed, in preparation for the HL-LHC
- A new Expression of Interest to re-install a PPS-like spectrometer for HL-LHC has just been approved by the CMS collaboration
 - 4 locations identified in consultation with the machine, near 200m (classic Roman Pots), and at 420m (new technologies) - staging possible
 - Greatly expanded physics program in all dimensions: Better high-mass acceptance * better low-mass acceptance * increased luminosity
 - Possible synergies with other upgrades/future detector developments: PPS was an "Early adopter" of rad-hard tracking and fast timing
- Encouragement from LHCC and CMS management to continue technical discussions with the machine, physics studies, R&D

Summary of the Summary

PPS presents several unique opportunities

٠

٠

- Chance to work with LHC detectors at the "bleeding edge" of technologies: radiation hardness, timing resolution requirements
- Physics with γ-γ (or IP-IP) interactions at new energies and unprecedented luminosities
 - Probing anomalous couplings and other new physics in a new way
 - Demonstrated ability to go from TDR to LHC data-taking in ~2 years (2014-2016)
 - Timescale of a PhD/postdoc, in contrast to many larger detectors at the LHC

Welcoming new collaborators/institutes

Extra

Detector performance - pixel/tracking

RP efficiency vs ξ (2017)

0.16

"3-d" silicon pixels for tracking

M. M. Obertino

- Electrodes in vertical columns through the substrate, instand of planas n+ col p spray e without reducing wafer p+ col p+ col Ide p spray n+ si / - high radiation hardness passivation oxide metal P Si p+ poly Si 📕 n+ poly-Si p+ Si
 - Est. up to ~5*10¹⁵ protons/cm² in 100 fb⁻¹
 - Low power dissipation

٠

- Efficiency losses mainly due to highly nonuniform irradiation of readout chips, not sensors
 - Mitigated by vertically shifting detectors manually in Run 2, to be automated in Run 3

Diamond timing detectors

- Based on synthetic single-crystal carbon vapor deposit diamonds
- In 2017: 3 planes/arm of "single-diamonds" + 1 plane of ultra-fast
- In 2018: 2 planes of single-diamonds + 2 plance of double-diamonds/arm

E. Bossini

Double diamonds: signal from 2 diamonds connected to same amplification channel

- Larger signal amplitude => improved timing resolution
- Up to 50ps/plane in ideal testbed conditions (oscilloscope readout, nominal LV and HV) ٠
- For Run 3: 8 planes of double-diamonds/arm (in 2 stations)

2 paths to combined physics with Roman Pots at P5 (CMS+TOTEM)

Run 3: Miscellaneous

٠

In addition to detector improvements, large efforts in the area of offline SW/ calibrations/trigger

- Automatic calibration procedures implemented for fast derivation of RP alignment and timing detector corrections
- High-level triggers developed, to exploit proton information in exclusive processes
- Full (GEANT4) and Fast simulation tools integrated in main CMS software