QCD at non-zero isospin asymmetry and its physical relevance

Bastian Brandt

Universität Bielefeld

in collaboration with Francesca Cuteri and Gergely Endrődi

Faculty of Physics

16.06.2021

Contents

- 1. Introduction: (Lattice) QCD and isospin chemical potential
- 2. Phase diagram
- 3. Equation of State
- 4. Early Universe at large lepton flavour asymmetries
- 5. Conclusions

QCD at non-zero isospin asymmetry and its physical relevance Introduction: (Lattice) QCD and isospin chemical potential

1. Introduction:

(Lattice) QCD and isospin chemical potential

Motivation

theoretical first principles description of:

evolution of early Universe

(in particular: quark and hadron epochs)

[Credit: BICEP2 collaboration/CERN/NASA*]

* taken from Keck website: https://www.keckobservatory.org [†] Wikimedia Commons

Motivation

theoretical first principles description of:

evolution of early Universe

(in particular: quark and hadron epochs)

compact stars: neutron stars

[Credit: BICEP2 collaboration/CERN/NASA*]

[Credit: Casey Reed - Penn St. U.[†]]

* taken from Keck website: https://www.keckobservatory.org [†] Wikimedia Commons

Motivation

theoretical first principles description of:

evolution of early Universe

(in particular: quark and hadron epochs)

compact stars: neutron stars

mass radius relation (solving TOV equation)

[Credit: BICEP2 collaboration/CERN/NASA*]

[Credit: Casey Reed - Penn St. U.[†]]

Motivation

theoretical first principles description of:

evolution of early Universe

(in particular: quark and hadron epochs)

- compact stars: neutron stars mass radius relation (solving TOV equation)
- fireball in heavy-ion collisions

hydrodynamical treatment of equilibrated quark gluon plasma

[Credit: BICEP2 collaboration/CERN/NASA*]

[Credit: Casey Reed - Penn St. U.[†]]

* taken from Keck website: https://www.keckobservatory.org † V

† Wikimedia Commons

Motivation

theoretical first principles description of:

evolution of early Universe

(in particular: quark and hadron epochs)

- compact stars: neutron stars mass radius relation (solving TOV equation)
- fireball in heavy-ion collisions

hydrodynamical treatment of equilibrated quark gluon plasma

 \Rightarrow dominated by strong force

fundamental input:

- phase diagram
- equation of state (EoS)

[Credit: BICEP2 collaboration/CERN/NASA*]

[Credit: Casey Reed - Penn St. U.[†]]

* taken from Keck website: https://www.keckobservatory.org

† Wikimedia Commons

Introduction – Quantum Chromodynamics (QCD)

theory of the strong interactions

Standard Model of Elementary Particles

Introduction – Quantum Chromodynamics (QCD)

- theory of the strong interactions
- governs dynamics of smallest to largest boundstates

(mesons & baryons to neutron star cores)

Standard Model of Elementary Particles

Introduction – Quantum Chromodynamics (QCD)

- theory of the strong interactions
- governs dynamics of smallest to largest boundstates

(mesons & baryons to neutron star cores)

responsible for 99.9% of the mass of visible matter in the Universe

mass [MeV] pion nucleon

Standard Model of Elementary Particles

Introduction – Quantum Chromodynamics

u d s c t b

- QCD is a quantum field theory: particles \longleftrightarrow field excitations
- QCD particles and fields:

quarks

g gluons

$$\psi_f(x) \in \text{fundamental repr. of } SU(3)$$

 $A_{\mu}(x) \in \text{Lie algebra (su(3)) of } SU(3)$

Introduction – Quantum Chromodynamics

- $\blacktriangleright \ \mathsf{QCD} \ \mathsf{is a quantum field theory:} \quad \mathsf{particles} \longleftrightarrow \mathsf{field excitations}$
- QCD particles and fields:

quarks \boldsymbol{U} \boldsymbol{d} \boldsymbol{s} \boldsymbol{c} \boldsymbol{t} \boldsymbol{b} $\psi_f(x)$ \in fundamental repr. of SU(3)gluons \boldsymbol{e} $\boldsymbol{A}_{\mu}(x)$ \in Lie algebra (su(3)) of SU(3)

► QCD Lagrangian: (Euclidean spacetime – after Wick rotation) $\mathcal{L} = \sum_{f} \bar{\psi}_{f} \{ \gamma_{\mu} (\partial_{\mu} + ig_{s}A_{\mu}) + m_{f} \} \psi_{f} + \frac{1}{4} \text{Tr}(F_{\mu\nu}F_{\mu\nu}[A_{\mu}, g_{s}])$ fermionic Yang-Mills (gluonic)

Introduction – Quantum Chromodynamics

- QCD is a quantum field theory: particles \longleftrightarrow field excitations
- QCD particles and fields:

u d s c t b quarks $\psi_f(x) \in \text{fundamental repr. of } SU(3)$ gluons g $A_{\mu}(x) \in \text{Lie algebra (su(3)) of } SU(3)$

QCD Lagrangian: (Euclidean spacetime – after Wick rotation) $\mathcal{L} = \sum_{f} \bar{\psi}_{f} \{ \gamma_{\mu} (\partial_{\mu} + ig_{s}A_{\mu}) + m_{f} \} \psi_{f} + \frac{1}{4} \operatorname{Tr} (F_{\mu\nu} F_{\mu\nu} [A_{\mu}, g_{s}]) \}$ fermionic Yang-Mills (gluonic)

Euclidean path integral (PI) quantisation: [Feynman '48]

$$\mathcal{Z} = \int \mathcal{D} A \mathcal{D} \psi \mathcal{D} ar{\psi} \, \exp \Big(- \int d^4 x \mathcal{L}(x) \Big)$$

finite temperature partition function: (grand canonical – zero density)

$$\mathcal{Z} = \mathsf{Tr}\big[e^{-H/T}\big] = \int_{\mathrm{BC}} DAD\psi D\bar{\psi} \, \exp\Big(-\int_0^{1/T} \int d^3 x \mathcal{L}(x)\Big)$$

natural regulator for PI: discrete spacetime

[Wilson '74]

- natural regulator for PI: discrete spacetime
- gluonic link variables: $U_{\mu}(x) = e^{iaA_{\mu}(x)} \hat{=} \longrightarrow$

- natural regulator for PI: discrete spacetime
- gluonic link variables: $U_{\mu}(x) = e^{iaA_{\mu}(x)} \hat{=} \longrightarrow$
- ▶ PI: fermions integrated out $Z = \int [dU] \det (D[U]) e^{-S_{gluon}[U]}$

gluon action and Dirac operator (staggered):

$$S_{\text{gluon}} = \frac{\beta}{N_c} \sum_{p} \text{ReTr}\left\{ \square \right\} \qquad D = \sum_{x,f} \left\{ m_f + \frac{\eta_{\mu}}{2a} \left(\longrightarrow - \longleftarrow \right)_{\mu} \right\}$$

- natural regulator for PI: discrete spacetime
- gluonic link variables: $U_{\mu}(x) = e^{iaA_{\mu}(x)} \hat{=} \longrightarrow$
- ▶ PI: fermions integrated out $\mathcal{Z} = \int [dU] \det (D[U]) e^{-S_{gluon}[U]}$

gluon action and Dirac operator (staggered):

$$S_{\text{gluon}} = \frac{\beta}{N_c} \sum_{p} \text{ReTr}\left\{ \square \right\} \qquad D = \sum_{x,f} \left\{ m_f + \frac{\eta_{\mu}}{2a} \left(\longrightarrow - \longleftarrow \right)_{\mu} \right\}$$

• in finite volume: finite dimensional integral
(use a
$$N_t \times N_s^3$$
 lattice – periodic spatial BC)

- \Rightarrow Monte-Carlo methods importance sampling
- $\mathcal{O}(10^9)$ degrees of freedom

- natural regulator for PI: discrete spacetime
- gluonic link variables: $U_{\mu}(x) = e^{iaA_{\mu}(x)} \hat{=} \longrightarrow$
- PI: fermions integrated out $\mathcal{Z} = \int [dU] \det (D[U]) e^{-S_{gluon}[U]}$

gluon action and Dirac operator (staggered):

$$S_{\text{gluon}} = \frac{\beta}{N_c} \sum_{p} \text{ReTr}\left\{ \square \right\} \qquad D = \sum_{x,f} \left\{ m_f + \frac{\eta_{\mu}}{2a} \left(\longrightarrow - \longleftarrow \right)_{\mu} \right\}$$

[Copyright: Forschungszentrum Jülich]

- natural regulator for PI: discrete spacetime
- gluonic link variables: $U_{\mu}(x) = e^{iaA_{\mu}(x)} \hat{=} \longrightarrow$
- PI: fermions integrated out $\mathcal{Z} = \int [dU]$

gluon action and Dirac operator (staggered):

$$S_{\text{gluon}} = \frac{\beta}{N_c} \sum_{p} \text{ReTr}\left\{ \square \right\} \qquad D = \sum_{x,f} \left\{ m_f + \frac{\eta_{\mu}}{2a} \left(\longrightarrow - \longleftarrow \right)_{\mu} \right\}$$

 in finite volume: finite dimensional integral (use a N_t × N_s³ lattice – periodic spatial BC)
 ⇒ Monte-Carlo methods – importance sampling

 $\mathcal{O}(10^9)$ degrees of freedom \rightarrow use GPUs

[Copyright: NVIDIA (from nvidia.com)]

[Wilson '74]

Introduction – Running coupling and Confinement

- QFT: physical quantities are renormalised quantities
 - $\begin{array}{l} \Rightarrow \quad \mbox{physical coupling } \alpha_s = g_s^R \mbox{ depends on the energy scale } \mu_E \\ \alpha_s \rightarrow 0 \mbox{ for } \mu_E \rightarrow \infty \qquad \mbox{ asymptotic freedom } [\mbox{ Gross, Wilczek '73; Politzer '73 }] \\ \alpha_s \rightarrow \infty \mbox{ for } \mu_E \rightarrow 0 \end{array}$

typical energy scales: $g_s^R = \mathcal{O}(1)$

 \Rightarrow non-perturbative methods are needed

Introduction – Running coupling and Confinement

- QFT: physical quantities are renormalised quantities
 - $\Rightarrow \mbox{ physical coupling } \alpha_s = g_s^R \mbox{ depends on the energy scale } \mu_E \\ \alpha_s \rightarrow 0 \mbox{ for } \mu_E \rightarrow \infty \mbox{ asymptotic freedom [Gross, Wilczek '73; Politzer '73]}$

 $\alpha_{s} \rightarrow \infty$ for $\mu_{E} \rightarrow 0$

typical energy scales: $g_s^R = \mathcal{O}(1)$

 \Rightarrow non-perturbative methods are needed

Confinement

- no direct evidence for QCD particles in colliders indirect evidence: jet events
 - $\rightarrow~$ quarks and gluons are confined in hadrons

[TASSO DESY (Image: Oxford PPU)]

Introduction – Running coupling and Confinement

- QFT: physical quantities are renormalised quantities
 - $\label{eq:asymptotic freedom} \begin{array}{l} \Rightarrow \quad \mbox{physical coupling } \alpha_s = g_s^R \mbox{ depends on the energy scale } \mu_E \\ \alpha_s \rightarrow 0 \mbox{ for } \mu_E \rightarrow \infty \qquad \mbox{asymptotic freedom} \quad \begin{tabular}{l} $$ Gross, Wilczek '73; Politzer '73 end{tabular} \end{tabular}$

 $\alpha_{\rm s} \rightarrow \infty ~{\rm for}~\mu_{\rm E} \rightarrow {\rm 0}$

typical energy scales: $g_s^R = \mathcal{O}(1)$

 \Rightarrow non-perturbative methods are needed

Confinement

- no direct evidence for QCD particles in colliders indirect evidence: jet events
 - $\rightarrow~$ quarks and gluons are confined in hadrons
- heuristic explanation for quark confinement: flux tube between quark and antiquark

(evidence from pure gauge theory simulations [Lang, Rebbi '82; ...])

[TASSO DESY (Image: Oxford PPU)]

Introduction – chiral symmetry

fundamental global symmetry for most of the phenomena observed in QCD:

chiral symmetry
$$SU_V(2) \times U_V(1) \times SU_A(2) \times U_A(1)$$
 $(N_f = 2)$
intact intact broken spontaneously broken
Baryon number $\Rightarrow \langle \bar{\psi}\psi \rangle \neq 0$ anomalously

chiral limit $(m_{u/d} = 0)$

 \Rightarrow 3 Goldstone bosons – pions

Introduction – chiral symmetry

fundamental global symmetry for most of the phenomena observed in QCD:

chiral symmetry
$$SU_V(2) \times U_V(1) \times SU_A(2) \times U_A(1)$$
 $(N_f = 2)$ broken explicitlyintactbroken explicitly $m_u - m_d \neq 0$ Baryon number $m_{u/d} \neq 0 \Rightarrow \langle \bar{\psi}\psi \rangle \neq 0$

in nature (physical point)

 \Rightarrow 3 Goldstone bosons – pions \rightarrow pseudo Goldstone bosons – $m_\pi
eq 0$

Introduction – chiral symmetry

fundamental global symmetry for most of the phenomena observed in QCD:

 $\begin{array}{c} \text{chiral symmetry} \\ \text{broken explicitly} \\ m_u - m_d \neq 0 \end{array} \begin{array}{c} \text{SU}_V(2) \times \text{U}_V(1) \times \text{SU}_A(2) \times \text{U}_A(1) \\ \text{intact} \\ \text{broken explicitly} \\ m_{u/d} \neq 0 \end{array} \begin{array}{c} (N_f = 2) \\ \text{intact} \\ \text{broken explicitly} \\ \text{order } \\ m_{u/d} \neq 0 \end{array}$

in nature (physical point)

- \Rightarrow 3 Goldstone bosons pions \rightarrow pseudo Goldstone bosons $m_\pi
 eq 0$
- Iow energy effective theory for Goldstone bosons:

chiral perturbation theory (χPT)

- systematic expansion in quark masses (external parameters (*T*, *B*, μ, ...) can be included)
- valid as long as $m_f, p, T, \ldots < \Lambda_{\chi}$

At large T: quarks and gluons are liberated

 \Rightarrow plasma of quarks and gluons

[Homepage of the CMB experiment, GSI (FAIR)]

At large T: quarks and gluons are liberated

- \Rightarrow plasma of quarks and gluons
- transition at n = 0: (first principles LQCD)
 - transition is a crossover [Aoki et al '06]
 - $T_c pprox 157~{
 m MeV}~(\sim 10^{12}~{
 m K})$

[Borsanyi et al '10; Bazavov et al '19]

[Homepage of the CMB experiment, GSI (FAIR)]

At large T: quarks and gluons are liberated

- \Rightarrow plasma of quarks and gluons
- transition at n = 0: (first principles LQCD)
 - transition is a crossover [Aoki et al '06]
 - $T_c \approx 157 \text{ MeV} (\sim 10^{12} \text{ K})$ [Borsanyi *et al* '10; Bazavov *et al* '19]

driven by:

- effective restoration of SU_A(2)
- deconfinement of quarks and gluons

Homepage of the CMB experiment, GSI (FAIR)]

At large T: quarks and gluons are liberated

- \Rightarrow plasma of quarks and gluons
- transition at n = 0: (first principles LQCD)
 - transition is a crossover [Aoki et al '06]
 - $T_c \approx 157$ MeV ($\sim 10^{12}$ K)

[Borsanyi et al '10; Bazavov et al '19]

driven by:

- effective restoration of SU_A(2)
- deconfinement of quarks and gluons
- transition at $n \neq 0$?

models predict a number of phases possible 1st order phase trans. + critical endpoint(s)

What about first principles information?

Lattice QCD: grand canonical ensemble density $n \rightarrow$ chemical potential μ "Physical" basis for QCD at $N_f = 3$: (strangeness not conserved in SM)

$$\mu_{u} = \frac{\mu_{B}}{3} + \frac{2\mu_{Q}}{3} \qquad \mu_{d} = \frac{\mu_{B}}{3} - \frac{\mu_{Q}}{3} \qquad \mu_{s} = \frac{\mu_{B}}{3} - \frac{\mu_{Q}}{3} - \mu_{s}$$

Lattice QCD: grand canonical ensemble density $n \rightarrow$ chemical potential μ

"Physical" basis for QCD at $N_f = 3$: (strangeness not conserved in SM)

$$\mu_{u} = \frac{\mu_{B}}{3} + \frac{2\mu_{Q}}{3} \qquad \mu_{d} = \frac{\mu_{B}}{3} - \frac{\mu_{Q}}{3} \qquad \mu_{s} = \frac{\mu_{B}}{3} - \frac{\mu_{Q}}{3} - \mu_{s}$$

Convenient basis for simulations: ("isospin" basis)

$$\mu_u = \mu_L + \mu_I \qquad \mu_d = \mu_L - \mu_I \qquad \mu_s$$

relation between bases:

$$\mu_B = 3\mu_L - \mu_I$$
 $\mu_Q = 2\mu_I$ $\mu_S = \mu_L - \mu_I - \mu_s$

Lattice QCD: grand canonical ensemble density $n \rightarrow$ chemical potential μ

"Physical" basis for QCD at $N_f = 3$: (strangeness not conserved in SM)

$$\mu_{u} = \frac{\mu_{B}}{3} + \frac{2\mu_{Q}}{3} \qquad \mu_{d} = \frac{\mu_{B}}{3} - \frac{\mu_{Q}}{3} \qquad \mu_{s} = \frac{\mu_{B}}{3} - \frac{\mu_{Q}}{3} - \mu_{s}$$

Convenient basis for simulations: ("isospin" basis)

$$\mu_u = \mu_L + \mu_I \qquad \mu_d = \mu_L - \mu_I \qquad \mu_s$$

▶ $\mu_L \neq 0 \neq \mu_s$: complex action (sign) problem

$$\mathcal{Z} = \int [dU] \det \left(D[U](\mu_u, \mu_d, \mu_s)
ight) e^{-S_{ ext{gluon}}[U]} \in \mathbb{C}$$

relation between bases:

$$\mu_B = 3\mu_L - \mu_I$$
 $\mu_Q = 2\mu_I$ $\mu_S = \mu_L - \mu_I - \mu_s$

Lattice QCD: grand canonical ensemble density $n \rightarrow$ chemical potential μ

"Physical" basis for QCD at $N_f = 3$: (strangeness not conserved in SM)

$$\mu_{u} = \frac{\mu_{B}}{3} + \frac{2\mu_{Q}}{3} \qquad \mu_{d} = \frac{\mu_{B}}{3} - \frac{\mu_{Q}}{3} \qquad \mu_{s} = \frac{\mu_{B}}{3} - \frac{\mu_{Q}}{3} - \mu_{s}$$

Convenient basis for simulations: ("isospin" basis)

$$\mu_u = \mu_L + \mu_I \qquad \qquad \mu_d = \mu_L - \mu_I \qquad \qquad \mu_s$$

• $\mu_L \neq 0 \neq \mu_s$: complex action (sign) problem

$$\mathcal{Z} = \int [dU] \det \left(D[U](\mu_u, \mu_d, \mu_s)
ight) e^{-S_{ ext{gluon}}[U]} \in \mathbb{C}$$

• pure isospin chemical potential: $\mu_L = \mu_s = 0$

det (D) is real, positive definite \longrightarrow suitable for importance sampling relation between bases:

 $\mu_B = 3\mu_L - \mu_I$ $\mu_Q = 2\mu_I$ $\mu_S = \mu_L - \mu_I - \mu_s$

10¹⁴vr

10¹²vr

10¹⁰yr

10⁸vi 10⁶vi

10⁴yr 100 yr

1 yr 10⁶s 10⁴s 100 s

1 s 10-25

10-4 10-65 10-85

Isospin asymmetry – physical significance

isospin asymmetry: $n_l = n_u - n_d \neq 0$

- stable isotopes
- heavy-ion collisions (Pb or Au) $N_n/N_n \approx 2/3$
- neutron star cores [Steiner et al '05] $N_{p}/N_{p} \gtrsim 1/39$
- early universe?
 - $n_l \neq 0$ possible for large lepton flavour asymmetries [Abuki, Brauner, Warringa '09; Wygas, Oldengott, Bödeker, Schwarz '18] discussed in more detail later \Rightarrow

160

140

lsospin asymmetry – physical significance

isospin asymmetry: $n_l = n_u - n_d \neq 0$

- stable isotopes
- ► heavy-ion collisions (Pb or Au) $N_p/N_n \approx 2/3$
- neutron star cores [Steiner *et al* '05] $N_p/N_n \gtrsim 1/39$

early universe?

 $n_l \neq 0$ possible for large lepton flavour asymmetries [Abuki, Brauner, Warringa '09; Wygas, Oldengott, Bödeker, Schwarz '18] \Rightarrow discussed in more detail later

typically: n_B dominates (exception **eU**)

however: n_l important ingredient

2. Phase diagram

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \square$ Phase diagram

UNIVERSITÄT BIELEFELD Faculty of Physics

Phase diagram

 $\chi \mathsf{PT}$ [Son, Stephanov '01]

expected phase diagram:

- hadronic phase (white)
- quark-gluon plasma

[Brandt, Endrődi, Schmalzbauer '18]

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \square$ Phase diagram

Phase diagram

 χ PT [Son, Stephanov '01]

expected phase diagram:

- hadronic phase (white)
- quark-gluon plasma
- T = 0 and $\mu_I \ge m_\pi/2$: $(\mu_Q \ge m_\pi)$

condensation of charged pions (Bose-Einstein Condensation – BEC)

UNIVERSITÄT

Faculty of Physics

QCD at non-zero isospin asymmetry and its physical relevance Phase diagram

Phase diagram

 χPT [Son, Stephanov '01]

expected phase diagram:

- hadronic phase (white)
- guark-gluon plasma
- \blacktriangleright T = 0 and $\mu_l \ge m_\pi/2$: $(\mu_Q \ge m_\pi)$ condensation of charged pions (Bose-Einstein Condensation – BEC)
- $\blacktriangleright \mu_I \gg m_{\pi}/2$: BCS phase!?

perturbation theory: 1-gluon exchange is attractive

[Brandt, Endrődi, Schmalzbauer '18]

$$D = \gamma_{\mu} D_{\mu} + m_{ud} + \gamma_{0} \tau_{3} \mu_{I}$$

SU_V(2)
explicit
$$\mu_{I} \neq 0$$

$$D = \gamma_{\mu} D_{\mu} + m_{ud} + \gamma_{0} \tau_{3} \mu_{I}$$

SU_V(2) \longrightarrow_{I} U_Q(1) \xrightarrow{I} Ø
explicit spontaneous
 $\mu_{I} \neq 0$ $\mu_{I} \ge m_{\pi}/2$

$$D = \gamma_\mu D_\mu + m_{ud} + \gamma_0 \tau_3 \mu_\mu$$

$$SU_{V}(2) \xrightarrow{\bullet} U_{Q}(1) \xrightarrow{\bullet} \varnothing$$
explicit spontaneous
$$\mu_{I} \neq 0 \qquad \mu_{I} \geq m_{\pi}/2$$

- cannot observe spontaneous symmetry breaking in finite V
- low mode in simulations

$$D = \gamma_{\mu} D_{\mu} + m_{ud} + \gamma_0 \tau_3 \mu_I + i \gamma_5 \tau_2 \lambda$$

Ø

explicit

$$\begin{array}{ccc} \mathsf{SU}_V(2) & \longrightarrow & \mathsf{U}_Q(1) & \longrightarrow & \varnothing \\ & & & & & \\ & & & \\ & & & & \\$$

- cannot observe spontaneous symmetry breaking in finite V
- low mode in simulations

need to break symmetry explicitly

 \Rightarrow introduce regulator: $\sim \lambda$ pionic source [Kogut, Sinclair '02] physical results: extrapolate $\lambda \rightarrow 0$ reliable extrapolations: main task for analysis

$$D = \gamma_{\mu}D_{\mu} + m_{ud} + \gamma_{0} au_{3} \mu_{I} + i\gamma_{5} au_{2} \lambda$$

Ø

$$U_{V}(2) \xrightarrow{\bullet} U_{Q}(1) \xrightarrow{\bullet} \varnothing$$
explicit
explicit
$$\mu_{I} \neq 0$$
pionic source λ

- cannot observe spontaneous symmetry breaking in finite V
- low mode in simulations

need to break symmetry explicitly

 \Rightarrow introduce regulator: $\sim \lambda$ pionic source [Kogut, Sinclair '02] physical results: extrapolate $\lambda \rightarrow 0$ reliable extrapolations: main task for analysis

improvement program:

S

[Brandt, Endrődi, Schmalzbauer '18]

- valence quark improvement
- leading order reweighting

Status and setup

- model/EFT results: (recent review: [Mannarelli '19])
 - χ PT (P)NJL phase diagram in hep-ph/0508117
 - linear sigma model HRG

(for detailled references see [Brandt, Endrődi, Schmalzbauer '18])

first results from lattice QCD:

 $N_t = 4$, unphysical masses, unimproved:

- $N_f = 2$ [Kogut, Sinclair, '02; '04]
- $N_f = 8$ [de Forcrand, et al, '07]

canonical approach, unph. masses, T = 0:

• $N_f=2+1$ [Detmold, Orginas, Shi '12]

here: • improved actions (N_f = 2 + 1)

- physical quark masses
- well controlled λ -extrapolations (from now on everything $\lambda = 0$)

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \square$ Phase diagram

0.6 0.8

0.2 0.4

μ / m.

Phase diagram from the lattice

continuum phase diagram

[Brandt, Endrődi, Schmalzbauer '18]

• BEC phase boundary

(Mer)

order parameter:

renormalised pion condensate

Phase diagram from the lattice

- continuum phase diagram
 [Brandt, Endrődi, Schmalzbauer '18]
 - BEC phase boundary
 O(2) universality class

- order parameter: renormalised pion condensate
- finite size scaling: consistency with O(2) scaling

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \square$ Phase diagram

Phase diagram from the lattice

- continuum phase diagram

 [Brandt, Endrödi, Schmalzbauer '18]
 - BEC phase boundary
 O(2) universality class
 - chiral crossover

relevant observable:

renormalised chiral condensate

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \square$ Phase diagram

Phase diagram from the lattice

- continuum phase diagram
 [Brandt, Endrödi, Schmalzbauer '18]
 - BEC phase boundary
 O(2) universality class
 - chiral crossover
 - pseudo-triple point

meeting point:

crossover and BEC phase boundary:

pseudo coexistence of three phases

from this point on:

phase boundaries coincide

Comparison to model and EFT results

lattice results as model input at $\mu \neq 0$:

- calibrate models
- improve understanding of model capabilities

Phase diagram in the $n_l - T$ plane

using a model independent 2d interpolation of n_l

(model independent: all possible "good" spline fits via Monte-Carlo)

[S. Borsanyi, private comm.; Brandt, Endrődi '16]

determine the $n_I - T$ phase diagram

Phase diagram in the $n_l - T$ plane

using a model independent 2d interpolation of n_l

(model independent: all possible "good" spline fits via Monte-Carlo)

[S. Borsanyi, private comm.; Brandt, Endrődi '16]

determine the $n_I - T$ phase diagram

... work in progress

3. Equation of state

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \sqsubseteq$ Equation of state

Equation of state at T = 0

Grand canonical ensemble T = 0:

$$p(T = 0, \mu_I = 0) = 0$$
 $n_I = \frac{\partial p}{\partial \mu_I}$ $\epsilon = -p + n_I \mu_I$

 $\Rightarrow \quad p(0,\mu_{I}) = \int_{0}^{\mu_{I}} d\mu \, n_{I}(0,\mu_{I}) \qquad I = -4p + n_{I}(0,\mu_{I})\mu_{I}$

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \sqsubseteq$ Equation of state

Equation of state at T = 0

Grand canonical ensemble T = 0:

 $p(T = 0, \mu_I = 0) = 0$ $n_I = \frac{\partial p}{\partial \mu_I}$ $\epsilon = -p + n_I \mu_I$

 $\Rightarrow \quad p(0,\mu_{I}) = \int_{0}^{\mu_{I}} d\mu \, n_{I}(0,\mu_{I}) \qquad I = -4p + n_{I}(0,\mu_{I})\mu_{I}$

- lattice simulation: [Brandt et al '18]
 T = 0 never exactly fulfilled
 - \Rightarrow use large N_t so that $T \approx 0$

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \vdash$ Equation of state

Equation of state at T = 0

Grand canonical ensemble T = 0:

 $p(T = 0, \mu_I = 0) = 0$ $n_I = \frac{\partial p}{\partial \mu_I}$ $\epsilon = -p + n_I \mu_I$

 $\Rightarrow \quad p(0,\mu_I) = \int_0^{\mu_I} d\mu \, n_I(0,\mu_I) \qquad I = -4p + n_I(0,\mu_I)\mu_I$

- lattice simulation: [Brandt *et al* '18] T = 0 never exactly fulfilled
 - \Rightarrow use large N_t so that $T \approx 0$
- correct for $T \neq 0$ effects with χ PT particularly relevant for $\mu_l \approx m_\pi/2$

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \vdash$ Equation of state

Equation of state at T = 0

Grand canonical ensemble T = 0:

 $p(T = 0, \mu_I = 0) = 0$ $n_I = \frac{\partial p}{\partial \mu_I}$ $\epsilon = -p + n_I \mu_I$

 $\Rightarrow \quad p(0,\mu_I) = \int_0^{\mu_I} d\mu \, n_I(0,\mu_I) \qquad I = -4p + n_I(0,\mu_I)\mu_I$

- Introduction: [Brandt et al '18] T = 0 never exactly fulfilled
 - \Rightarrow use large N_t so that $T \approx 0$
- correct for $T \neq 0$ effects with χPT particularly relevant for $\mu_l \approx m_{\pi}/2$
 - \Rightarrow fit at LO gives $f_{\pi} = 133(4)$ MeV

Equation of state at T = 0

Resulting equation of state:

- in good agreement with NLO χPT [Adhikari, Andersen '19]
- currently: only a single lattice spacing

continuum limit: ... work in progress

Extracting the EoS at non-zero T

p(T,0) and I(T,0) are known [Borsanyi et al '13, Bazavov et al '14]

 \Rightarrow need to determine:

 $\Delta p(T,\mu_I) \equiv p(T,\mu_I) - p(T,0) \quad \text{and} \quad \Delta I(T,\mu_I) \equiv I(T,\mu_I) - I(T,0)$

Extracting the EoS at non-zero T

p(T, 0) and I(T, 0) are known [Borsanyi et al '13, Bazavov et al '14]

 \Rightarrow need to determine:

 $\Delta p(T,\mu_I) \equiv p(T,\mu_I) - p(T,0)$ and $\Delta I(T,\mu_I) \equiv I(T,\mu_I) - I(T,0)$

• computation of Δp :

As before: $\Delta p(T, \mu_l) = \int_0^{\mu_l} d\mu \, n_l(T, \mu)$

• computation of ΔI :

Starting point:
$$\frac{\Delta I(T,\mu_l)}{T^4} = T \frac{\partial}{\partial T} \left(\frac{\Delta p(T,\mu_l)}{T^4} \right) + \frac{\mu_l n_l(T,\mu_l)}{T^4}$$

$$\Rightarrow \Delta I(T,\mu_l) = -4 \int_0^{\mu_l} d\mu'_l n_l(T,\mu'_l) + \int_0^{\mu_l} d\mu'_l T \frac{\partial}{\partial T} n_l(T,\mu'_l) + \mu_l n_l(T,\mu_l)$$

use 2d interpolation of $n_I(T, \mu_I)$

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \sqsubseteq$ Equation of state

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \sqsubseteq$ Equation of state

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \sqsubseteq$ Early Universe at large lepton flavour asymmetries

4. Early Universe at large lepton flavour asymmetries

QCD at non-zero isospin asymmetry and its physical relevance \Box Early Universe at large lepton flavour asymmetries

Evolution of the early Universe

for 100 ${\rm GeV}>$ $T\gtrsim$ 10 ${\rm MeV}:$

 $n_B, n_Q, n_{L_e}, n_{L_\mu}, n_{L_\tau}$ conserved in comoving volume

Cosmic trajectory: isentropic expansion with parameters $T, \mu_B, \mu_Q, \mu_{L_\ell}$ with $\ell \in (e, \mu, \tau)$ (grand canonical ensemble)

conservation equations:

 $\frac{n_B}{s} = b \qquad \frac{n_Q}{s} = 0 \qquad \frac{n_{L_\ell}}{s} = l_\ell$

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \sqsubseteq$ Early Universe at large lepton flavour asymmetries

Evolution of the early Universe

for 100 ${\rm GeV}>$ $T\gtrsim$ 10 ${\rm MeV}:$

 $n_B, n_Q, n_{L_e}, n_{L_{\mu}}, n_{L_{\tau}}$ conserved in comoving volume

Cosmic trajectory: isentropic expansion with parameters
 T, μ_B, μ_Q, μ_{Lℓ} with ℓ ∈ (e, μ, τ)
 (grand canonical ensemble)

conservation equations:

 $\frac{n_B}{s} = b \qquad \frac{n_Q}{s} = 0 \qquad \frac{n_{L_\ell}}{s} = l_\ell$

- empirical constraints (CMB):
 - $b = 8.6(0.06) \cdot 10^{-11}$ [Planck collaboration '15]
 - $|\mathit{I}_e + \mathit{I}_\mu + \mathit{I}_ au| < 0.012$ [Oldengott, Schwarz '17]

QCD at non-zero isospin asymmetry and its physical relevance $\hfill \sqsubseteq$ Early Universe at large lepton flavour asymmetries

Evolution of the early Universe

for 100 ${\rm GeV}>$ $T\gtrsim$ 10 ${\rm MeV}:$

 $n_B, n_Q, n_{L_e}, n_{L_{\mu}}, n_{L_{\tau}}$ conserved in comoving volume

Cosmic trajectory: isentropic expansion with parameters *T*, μ_B, μ_Q, μ_{Lℓ} with ℓ ∈ (e, μ, τ) (grand canonical ensemble)

conservation equations:

 $\frac{n_B}{s} = b \qquad \frac{n_Q}{s} = 0 \qquad \frac{n_{L_\ell}}{s} = l_\ell$

empirical constraints (CMB):

- $b = 8.6(0.06) \cdot 10^{-11}$ [Planck collaboration '15]
- $|\mathit{I}_e + \mathit{I}_\mu + \mathit{I}_ au| < 0.012$ [Oldengott, Schwarz '17]

weak equilibrium & charge neutrality:

 \Rightarrow standard scenario: $\mu_B \approx \mu_Q \approx 0$

QCD at non-zero isospin asymmetry and its physical relevance $\hfill {\mbox{ Learly Universe at large lepton flavour asymmetries}}$

Evolution of the early Universe

for 100 ${\rm GeV}>$ $T\gtrsim$ 10 ${\rm MeV}:$

 $n_B, n_Q, n_{L_e}, n_{L_{\mu}}, n_{L_{\tau}}$ conserved in comoving volume

Cosmic trajectory: isentropic expansion with parameters $T, \mu_B, \mu_Q, \mu_{L_\ell}$ with $\ell \in (e, \mu, \tau)$ EoS for (grand canonical ensemble) $p \approx p_Q$

conservation equations:

 $\frac{n_B}{s} = b \qquad \frac{n_Q}{s} = 0 \qquad \frac{n_{L_\ell}}{s} = l_\ell$

- empirical constraints (CMB):
 - $b=8.6(0.06)\cdot10^{-11}$ [Planck collaboration '15]
 - $|\mathit{I}_{e}+\mathit{I}_{\mu}+\mathit{I}_{ au}| < 0.012$ [Oldengott, Schwarz '17]

weak equilibrium & charge neutrality:

 \Rightarrow standard scenario: $\mu_B \approx \mu_Q \approx 0$

EoS for cosmic trajectory:

$p_{\rm QCD}$ from the lattice

• to first approximation:

EoS for $\mu_B = \mu_Q = 0$

• effects of $\mu_B \neq 0 \neq \mu_Q$: Taylor expansion QCD at non-zero isospin asymmetry and its physical relevance \Box Early Universe at large lepton flavour asymmetries

Cosmic trajectory with lepton flavour asymmetries

empirical constraints (CMB):

- $b = 8.6(0.06) \cdot 10^{-11}$ [Planck collaboration '15]
- $|I_e+I_\mu+I_ au| < 0.012$ [Oldengott, Schwarz '17]

▶ sum of I_{ℓ} constrained – individual I_{ℓ} not

 $I_{\ell} - I_{\ell'} \gtrsim 0.1$ possible in models:

- explanation of ${}^{4}\mathrm{He}$ and light element abundances [Ichikawa et al '04, ...]
- from beyond standard model (BSM) physics [McDonald '00, ...]

QCD at non-zero isospin asymmetry and its physical relevance \Box Early Universe at large lepton flavour asymmetries

Cosmic trajectory with lepton flavour asymmetries

empirical constraints (CMB):

- $b=8.6(0.06)\cdot10^{-11}$ [Planck collaboration '15]
- $|I_e+I_\mu+I_ au| < 0.012$ [Oldengott, Schwarz '17]

▶ sum of I_{ℓ} constrained – individual I_{ℓ} not

 $I_{\ell} - I_{\ell'} \gtrsim 0.1$ possible in models:

• explanation of ${}^{4}\mathrm{He}$ and light element abundances [Ichikawa et al '04, ...]

• from beyond standard model (BSM) physics [McDonald '00, ...]

• cosmic trajectories for $|l_{\ell}| \gg 0$ (but $|l_e + l_{\mu} + l_{\tau}| = 0$)

- \Rightarrow trajectories at large $\mu_Q \gg |\mu_B| > 0$
- EoS from Taylor expansion [Middeldorf-Wygas, Oldengott, Bödeker, Schwarz '20]
- EoS from model [Vovchenko, Brandt et al '20]

Cosmic trajectories and pion condensation

First test: simple model with pion condensation

- HRG & effective mass model for pions (quasiparticle picture & rearrangement term)
- match the model to lattice QCD at T = 0

[Vovchenko, Schaffner-Bielich, Hajkarim, Brandt et al '20]

Cosmic trajectories and pion condensation

First test: simple model with pion condensation

- HRG & effective mass model for pions (quasiparticle picture & rearrangement term)
- match the model to lattice QCD at T = 0[Vovchenko, Schaffner-Bielich, Hajkarim, Brandt *et al* '20]

 $T \lesssim 160 \text{ MeV}$ $\mu_I \lesssim 0.8 - 0.9 m_{\pi}$

To determine range of applicability: compare EoS to lattice data ($N_t = 10, 12$)

expect the model to work reliably for:

Cosmic trajectories and pion condensation

First test: simple model with pion condensation

- HRG & effective mass model for pions (quasiparticle picture & rearrangement term)
- match the model to lattice QCD at T = 0[Vovchenko, Schaffner-Bielich, Hajkarim, Brandt *et al* '20]

To determine range of applicability: compare EoS to lattice data ($N_t = 10, 12$)

expect the model to work reliably for:

Cosmic trajectories with large $|I_e + I_\mu|$

constraints:

- $|I_e + I_\mu + I_\tau| = 0$
- $I_e I_\mu = 0$
- dependence on $I_e I_\mu$ very mild

 $T \lesssim 160 \text{ MeV}$ $\mu_I \lesssim 0.8 - 0.9 m_{\pi}$

Cosmic trajectories and pion condensation

Effects of pion condensation:

- pion condensation strongly affects EoS
- enhances relic density of primordial gravitational waves
- modifies fraction of primordial black holes heavier than solar masses

First test: simple model with pion condensation

- HRG & effective mass model for pions (quasiparticle picture & rearrangement term)
- match the model to lattice QCD at T = 0

[Vovchenko, Schaffner-Bielich, Hajkarim, Brandt et al '20]

Conclusions

• QCD phase diagram at $\mu_I \neq 0$

open question:

existence/location of BCS phase?

Conclusions

• QCD phase diagram at $\mu_I \neq 0$

open question:

existence/location of BCS phase?

Equation of state

work in progress: continuum limit

Conclusions

• QCD phase diagram at $\mu_I \neq 0$

open question: existence/location of BCS phase?

Equation of state

work in progress: continuum limit

- early universe with lepton flavour asymmetry
 [Vovchenko, Schaffner-Bielich, Hajkarim, Brandt et al '20]
 - ⇒ conceivable lepton flavour asymmetries: pion condensation can occur possible environment for pion stars? [Brandt, Endrödi, Fraga, Hippert *et al* '18]

Outlook: extension to non-zero baryon density

Physical systems discussed:

all feature $\mu_L \neq 0 \neq \mu_s$

- early universe with large lepton asymm.
- compact stars
- heavy ion-collisions

eventually: need to overcome sign problem

for small $\mu_L \neq 0 \neq \mu_s$:

indirect methods: (starting from $\mu = 0$)

Taylor expansion; analytic continuation; reweighting

(only possible in absence of phase transition)

here: use results at $\mu_{I} \neq 0$ as a novel starting point for Taylor expansion

 \Rightarrow Work in progress . . .

Hunting the BCS phase

First evidence:

coexistence of BEC and deconfinement

⇒ look at Polyakov loop (associated with deconfinement)

However: need a more clear-cut criterion

Hunting the BCS phase

First evidence:

coexistence of BEC and deconfinement

⇒ look at Polyakov loop (associated with deconfinement)

However: need a more clear-cut criterion

• extension of Banks-Casher relation to $\mu_I \neq 0$:

$$\Delta^2 = rac{2\pi^3}{9} \left<
ho(0) \right> \quad (V o \infty, \, m_{ud} o 0, \, \mu_I \, ext{ large})$$

[Kanazawa, Wettig, Yamamoto '12]

Hunting the BCS phase

First evidence:

coexistence of BEC and deconfinement

⇒ look at Polyakov loop (associated with deconfinement)

However: need a more clear-cut criterion

• extension of Banks-Casher relation to $\mu_I \neq 0$:

$$\Delta^2 = rac{2\pi^3}{9} \left<
ho(0) \right> \quad (V o \infty, \, m_{ud} o 0, \, \mu_I \, ext{large})$$

[Kanazawa, Wettig, Yamamoto '12]

$$\begin{array}{ll} \text{for } m_{ud} \neq 0 & \rho(0) \to \rho(m_{ud}) \\ \text{search plateau for } \rho(m_{ud}) \text{ at large } \mu_I \end{array}$$

Hunting the BCS phase

First evidence:

coexistence of BEC and deconfinement

⇒ look at Polyakov loop (associated with deconfinement)

However: need a more clear-cut criterion

• extension of Banks-Casher relation to $\mu_I \neq 0$:

$$\Delta^2 = rac{2\pi^3}{9} \langle
ho(0)
angle \quad (V o \infty, \, m_{ud} o 0, \, \mu_I \, ext{large})$$

[Kanazawa, Wettig, Yamamoto '12]

for
$$m_{\scriptscriptstyle ud}
eq 0$$
: $ho(0)
ightarrow
ho(m_{\scriptscriptstyle ud})$

search plateau for $\rho(m_{ud})$ at large μ_I

Need: • finer lattices • larger μ_l • $\lambda \rightarrow 0$ extrap. • finite V study

