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Motivation

Motivation
theoretical first principles description of:

I evolution of early Universe

(in particular: quark and hadron epochs)

I compact stars: neutron stars

mass radius relation (solving TOV equation)

I fireball in heavy-ion collisions

hydrodynamical treatment of equilibrated
quark gluon plasma

⇒ dominated by strong force

fundamental input:

• phase diagram

• equation of state
(EoS)

[ Credit: BICEP2 collaboration/CERN/NASA∗ ]

∗ taken from Keck website: https://www.keckobservatory.org † Wikimedia Commons
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Introduction – Quantum Chromodynamics (QCD)

I theory of the strong interactions

I governs dynamics of smallest to
largest boundstates

(mesons & baryons to neutron star cores)

I responsible for 99.9% of the mass of
visible matter in the Universe
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Introduction

Introduction – Quantum Chromodynamics

I QCD is a quantum field theory: particles ←→ field excitations

I QCD particles and fields:

quarks u d s c t b ψf (x) ∈ fundamental repr. of SU(3)

gluons g Aµ(x) ∈ Lie algebra (su(3)) of SU(3)

I QCD Lagrangian: (Euclidean spacetime – after Wick rotation)

L =
∑

f ψ̄f

{
γµ
(
∂µ + igsAµ

)
+ mf

}
ψf + 1

4
Tr
(
FµνFµν [Aµ, gs ]

)
fermionic Yang-Mills (gluonic)

I Euclidean path integral (PI) quantisation: [ Feynman ’48 ]

Z =

∫
DADψDψ̄ exp

(
−
∫

d4xL(x)
)

I finite temperature partition function: (grand canonical – zero density)

Z = Tr
[
e−H/T ] =

∫
BC

DADψDψ̄ exp
(
−
∫ 1/T

0

∫
d3xL(x)

)
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Introduction

Introduction – lattice discretisation
I natural regulator for PI: discrete spacetime

I gluonic link variables: Uµ(x) = e iaAµ(x)=̂

I PI: fermions integrated out

Z =

∫
[dU]

gluon action and Dirac operator (staggered):

Sgluon =
β

Nc

∑
p

ReTr
{ }

D =
∑
x,f

{
mf +

ηµ
2a

(
-

)
µ

}
I in finite volume: finite dimensional integral

(use a Nt × N3
s lattice – periodic spatial BC)

⇒ Monte-Carlo methods – importance sampling

O(109) degrees of freedom

[ Wilson ’74 ]
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Introduction

Introduction – Running coupling and Confinement

I QFT: physical quantities are renormalised quantities

⇒ physical coupling αs = gR
s depends on the energy scale µE

αs → 0 for µE →∞ asymptotic freedom [ Gross, Wilczek ’73; Politzer ’73 ]

αs →∞ for µE → 0

typical energy scales: gR
s = O(1)

⇒ non-perturbative methods are needed

I Confinement

• no direct evidence for QCD particles in colliders

indirect evidence: jet events

→ quarks and gluons are confined in hadrons

• heuristic explanation for quark confinement:

flux tube between quark and antiquark

(evidence from pure gauge theory simulations [ Lang, Rebbi ’82; . . . ] )
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Introduction – chiral symmetry

I fundamental global symmetry for most of the phenomena observed in QCD:

chiral symmetry (Nf = 2)SUV (2)× UV (1)× SUA(2)× UA(1)

intact intact
Baryon number

broken spontaneously

⇒
〈
ψ̄ψ
〉
6= 0

broken
anomalously

chiral limit (mu/d = 0)

⇒ 3 Goldstone bosons – pions

→ pseudo Goldstone bosons – mπ 6= 0

I low energy effective theory for Goldstone bosons:

chiral perturbation theory (χPT)

• systematic expansion in quark masses

(external parameters (T , B, µ, . . .) can be included)

• valid as long as mf , p, T , . . . < Λχ
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Introduction – QCD phase diagram
At large T : quarks and gluons are liberated

⇒ plasma of quarks and gluons

I transition at n = 0: (first principles LQCD)

• transition is a crossover [ Aoki et al ’06 ]

• Tc ≈ 157 MeV (∼ 1012 K)
[ Borsanyi et al ’10; Bazavov et al ’19 ]

driven by:

• effective restoration of SUA(2)

• deconfinement of quarks and gluons

I transition at n 6= 0?

models predict a number of phases

possible 1st order phase trans.
+ critical endpoint(s)

What about first principles information?

[ Homepage of the CMB experiment, GSI (FAIR) ]
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QCD at non-zero isospin asymmetry and its physical relevance

Introduction

Introduction – QCD phase diagram
At large T : quarks and gluons are liberated

⇒ plasma of quarks and gluons

I transition at n = 0: (first principles LQCD)

• transition is a crossover [ Aoki et al ’06 ]

• Tc ≈ 157 MeV (∼ 1012 K)
[ Borsanyi et al ’10; Bazavov et al ’19 ]

driven by:

• effective restoration of SUA(2)

• deconfinement of quarks and gluons

I transition at n 6= 0?

models predict a number of phases

possible 1st order phase trans.
+ critical endpoint(s)

What about first principles information?

[ Homepage of the CMB experiment, GSI (FAIR) ]

sQGP

uSC
dSC
CFL

2SC

Critical
  Point

Quarkyonic
   Matter

Quark-Gluon Plasma

Hadronic Phase

Color Superconductors?

Te
m

pe
ra

tu
re

  T

Baryon Chemical Potential  mB

Inhom

ogeneous  S
cB

Liquid-Gas

Nuclear Superfluid
CFL-K ,  Crystalline CSC
Meson supercurrent
Gluonic phase, Mixed phase

0

[ Fukushima, Hatsuda ’11 ]



QCD at non-zero isospin asymmetry and its physical relevance

Introduction

Isospin chemical potential
Lattice QCD: grand canonical ensemble density n → chemical potential µ

“Physical” basis for QCD at Nf = 3: (strangeness not conserved in SM)

µu =
µB

3
+

2µQ

3
µd =

µB

3
− µQ

3
µs =

µB

3
− µQ

3
− µS

Convenient basis for simulations: (“isospin” basis)

µu = µL + µI µd = µL − µI µs

I µL 6= 0 6= µs : complex action (sign) problem

Z =

∫
[dU] det

(
D[U](µu, µd , µs)

)
e−Sgluon[U] ∈ C

I pure isospin chemical potential: µL = µs = 0

det
(
D
)

is real, positive definite −→ suitable for importance sampling

relation between bases:

µB = 3µL − µI µQ = 2µI µS = µL − µI − µs
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Isospin asymmetry – physical significance

isospin asymmetry: nI = nu − nd 6= 0

I stable isotopes

I heavy-ion collisions (Pb or Au)

Np/Nn ≈ 2/3

I neutron star cores [ Steiner et al ’05 ]

Np/Nn & 1/39

I early universe?

nI 6= 0 possible for large lepton flavour asymmetries
[ Abuki, Brauner, Warringa ’09; Wygas, Oldengott, Bödeker, Schwarz ’18 ]

⇒ discussed in more detail later

typically: nB dominates (exception eU) however: nI important ingredient
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2. Phase diagram
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Phase diagram χPT [ Son, Stephanov ’01 ]

expected phase diagram:

I hadronic phase (white)

I quark-gluon plasma

I T = 0 and µI ≥ mπ/2: (µQ ≥ mπ)

condensation of charged pions
(Bose-Einstein Condensation – BEC)
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perturbation theory:
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Chiral symmetry breaking pattern

D = γµDµ + mud

SUV (2)

+γ0τ3 µI

UQ(1)

explicit

µI 6= 0

I need to break symmetry explicitly

⇒ introduce regulator: ∼ λ
pionic source [ Kogut, Sinclair ’02 ]

physical results: extrapolate λ→ 0

reliable extrapolations:
main task for analysis

I improvement program:
[ Brandt, Endrődi, Schmalzbauer ’18 ]

• valence quark improvement
• leading order reweighting
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[ Brandt, Endrődi, Schmalzbauer ’18 ]

• valence quark improvement
• leading order reweighting

ψ̄γ5τ2ψ
ψ̄γ5τ1ψ

V



QCD at non-zero isospin asymmetry and its physical relevance

Phase diagram

Chiral symmetry breaking pattern

D = γµDµ + mud

SUV (2)

+γ0τ3 µI

UQ(1) ∅

explicit

µI 6= 0

spontaneous

µI ≥ mπ/2

I need to break symmetry explicitly

⇒ introduce regulator: ∼ λ
pionic source [ Kogut, Sinclair ’02 ]

physical results: extrapolate λ→ 0

reliable extrapolations:
main task for analysis

I improvement program:
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Status and setup

I model/EFT results: (recent review: [ Mannarelli ’19 ] )

• χPT • (P)NJL phase diagram in hep-ph/0508117
• linear sigma model • HRG

(for detailled references see [ Brandt, Endrődi, Schmalzbauer ’18 ] )

I first results from lattice QCD:

Nt = 4, unphysical masses, unimproved:

• Nf = 2 [ Kogut, Sinclair, ’02; ’04 ]

• Nf = 8 [ de Forcrand, et al, ’07 ]

canonical approach, unph. masses, T = 0:

• Nf = 2 + 1 [ Detmold, Orginas, Shi ’12 ]

I here: • improved actions (Nf = 2 + 1)

• physical quark masses

• well controlled λ-extrapolations (from now on everything λ = 0)
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I continuum phase diagram
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[ Brandt, Endrődi, Schmalzbauer ’18 ]

• BEC phase boundary

O(2) universality class

• chiral crossover

I relevant observable:

renormalised chiral condensate

pion

condensation

chiral
crossover

µI/mπ

T
[M

eV
]

0 0.5 1 1.5 2 2.5
120

130

140

150

160

170

180



QCD at non-zero isospin asymmetry and its physical relevance

Phase diagram

Phase diagram from the lattice

I continuum phase diagram
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Phase diagram

Comparison to model and EFT results

[ Mannarelli ’19 ]

χPT [ Splittorff, Toublan, Verbaarschot ’02 ]

NJL [ He, Jin, Zhuang ’05 ]
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lattice results as model input at µ 6= 0:

• calibrate models

• improve understanding of model capabilities
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Phase diagram in the nI − T plane
using a model independent 2d interpolation of nI

(model independent: all possible “good” spline fits via Monte-Carlo)
[ S. Borsanyi, private comm.; Brandt, Endrődi ’16 ]

determine the nI − T phase diagram

I consider multiple Nt for continuum limit

. . . work in progress
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determine the nI − T phase diagram

I consider multiple Nt for continuum limit

. . . work in progress

pion

condensation

chiral crossover

nI/m
3
π

T
[M

eV
]

0 0.5 1 1.5 2
0

30

60

90

120

150

180

0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

µI/mπ

n
I
/m

3 π

T = 124 MeV

T = 136 MeV

T = 148 MeV

T = 162 MeV

Nt = 8



QCD at non-zero isospin asymmetry and its physical relevance

Equation of state

3. Equation of state



QCD at non-zero isospin asymmetry and its physical relevance

Equation of state

Equation of state at T = 0
Grand canonical ensemble T = 0:

p(T = 0, µI = 0) = 0 nI =
∂p

∂µI
ε = −p + nIµI

⇒ p(0, µI ) =

∫ µI

0

dµ nI (0, µI ) I = −4p + nI (0, µI )µI

can be obtained from a spline interpolation of nI (0, µI )

I lattice simulation: [ Brandt et al ’18 ]

T = 0 never exactly fulfilled

⇒ use large Nt so that T ≈ 0

I correct for T 6= 0 effects with χPT

particularly relevant for µI ≈ mπ/2

⇒ fit at LO gives fπ = 133(4) MeV
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Equation of state at T = 0

Resulting equation of state:
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I in good agreement with NLO χPT [ Adhikari, Andersen ’19 ]

I currently: only a single lattice spacing

continuum limit: . . . work in progress
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Extracting the EoS at non-zero T
p(T , 0) and I (T , 0) are known [ Borsanyi et al ’13, Bazavov et al ’14 ]

⇒ need to determine:

∆p(T , µI ) ≡ p(T , µI )− p(T , 0) and ∆I (T , µI ) ≡ I (T , µI )− I (T , 0)

I computation of ∆p:

As before: ∆p(T , µI ) =

∫ µI

0

dµ nI (T , µ)

I computation of ∆I :

Starting point:
∆I (T , µI )

T 4
= T

∂

∂T

(
∆p(T , µI )

T 4

)
+
µInI (T , µI )

T 4

⇒
∆I (T , µI ) = −4

∫ µI

0

dµ′InI (T , µ
′
I ) +

∫ µI

0

dµ′IT
∂

∂T
nI (T , µ

′
I ) + µInI (T , µI )

use 2d interpolation of nI (T , µI )
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Early Universe at large lepton flavour asymmetries

Evolution of the early Universe
for 100 GeV > T & 10 MeV:

nB , nQ , nLe , nLµ , nLτ

conserved in comoving volume

I Cosmic trajectory: isentropic expansion with parameters

T , µB , µQ , µL` with ` ∈ (e, µ, τ)

(grand canonical ensemble)

I conservation equations:
nB
s

= b
nQ
s

= 0
nL`
s

= l`

I empirical constraints (CMB):

• b = 8.6(0.06) · 10−11
[ Planck collaboration ’15 ]

• |le + lµ + lτ | < 0.012 [ Oldengott, Schwarz ’17 ]

weak equilibrium & charge neutrality:

⇒ standard scenario: µB ≈ µQ ≈ 0
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Evolution of the early Universe
for 100 GeV > T & 10 MeV:

nB , nQ , nLe , nLµ , nLτ

conserved in comoving volume

I Cosmic trajectory: isentropic expansion with parameters

T , µB , µQ , µL` with ` ∈ (e, µ, τ)

(grand canonical ensemble)

I conservation equations:
nB
s

= b
nQ
s

= 0
nL`
s

= l`

I empirical constraints (CMB):

• b = 8.6(0.06) · 10−11
[ Planck collaboration ’15 ]

• |le + lµ + lτ | < 0.012 [ Oldengott, Schwarz ’17 ]

weak equilibrium & charge neutrality:

⇒ standard scenario: µB ≈ µQ ≈ 0

EoS for cosmic trajectory:

p ≈ pQCD + plept. + pγ

ideal gas

` and ν`

ideal gas

pQCD from the lattice

• to first approximation:

EoS for µB = µQ = 0

• effects of µB 6= 0 6= µQ :

Taylor expansion
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Cosmic trajectory with lepton flavour asymmetries
empirical constraints (CMB):

• b = 8.6(0.06) · 10−11
[ Planck collaboration ’15 ]

• |le + lµ + lτ | < 0.012 [ Oldengott, Schwarz ’17 ]

I sum of l` constrained – individual l` not

l` − l`′ & 0.1 possible in models:

• explanation of 4He and light element abundances [ Ichikawa et al ’04, . . . ]

• from beyond standard model (BSM) physics [ McDonald ’00, . . . ]

I cosmic trajectories for |l`| � 0 (but |le + lµ + lτ | = 0)

⇒ trajectories at large µQ � |µB | > 0

• EoS from Taylor expansion
[ Middeldorf-Wygas, Oldengott, Bödeker, Schwarz ’20 ]

• EoS from model [ Vovchenko, Brandt et al ’20 ]
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Cosmic trajectories and pion condensation
First test: simple model with pion condensation

• HRG & effective mass model for pions
(quasiparticle picture & rearrangement term)

• match the model to lattice QCD at T = 0
[ Vovchenko, Schaffner-Bielich, Hajkarim, Brandt et al ’20 ]
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Cosmic trajectories and pion condensation
First test: simple model with pion condensation

• HRG & effective mass model for pions
(quasiparticle picture & rearrangement term)

• match the model to lattice QCD at T = 0
[ Vovchenko, Schaffner-Bielich, Hajkarim, Brandt et al ’20 ]

To determine range of applicability: compare EoS to lattice data (Nt = 10, 12)

I expect the model to work reliably for: T . 160 MeV µI . 0.8− 0.9mπ

Cosmic trajectories with large |le + lµ|

constraints:

• |le + lµ + lτ | = 0

• le − lµ = 0

• dependence on le − lµ very mild
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Cosmic trajectories and pion condensation
First test: simple model with pion condensation

• HRG & effective mass model for pions
(quasiparticle picture & rearrangement term)

• match the model to lattice QCD at T = 0
[ Vovchenko, Schaffner-Bielich, Hajkarim, Brandt et al ’20 ]

Effects of pion condensation:

• pion condensation strongly affects EoS

• enhances relic density of primordial gravitational waves

• modifies fraction of primordial black holes heavier than solar masses
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Conclusions
I QCD phase diagram at µI 6= 0

open question:

existence/location of BCS phase?

I Equation of state

work in progress: continuum limit

I early universe with lepton flavour asymmetry
[ Vovchenko, Schaffner-Bielich, Hajkarim, Brandt et al ’20 ]

⇒ conceivable lepton flavour asymmetries:

pion condensation can occur

possible environment for pion stars?
[ Brandt, Endrődi, Fraga, Hippert et al ’18 ]

pion

condensation

chiral
crossover

µI/mπ

T
[M

eV
]

0 0.5 1 1.5 2 2.5
120

130

140

150

160

170

180



QCD at non-zero isospin asymmetry and its physical relevance

Early Universe at large lepton flavour asymmetries

Conclusions
I QCD phase diagram at µI 6= 0

open question:

existence/location of BCS phase?

I Equation of state

work in progress: continuum limit

I early universe with lepton flavour asymmetry
[ Vovchenko, Schaffner-Bielich, Hajkarim, Brandt et al ’20 ]

⇒ conceivable lepton flavour asymmetries:

pion condensation can occur

possible environment for pion stars?
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Outlook: extension to non-zero baryon density
Physical systems discussed:

all feature µL 6= 0 6= µs

• early universe with large lepton asymm.

• compact stars

• heavy ion-collisions µL

T

µIBEC

eventually: need to overcome sign problem

for small µL 6= 0 6= µs :

indirect methods: (starting from µ = 0)
Taylor expansion; analytic continuation; reweighting

(only possible in absence of phase transition)

here: use results at µI 6= 0 as a novel starting point for Taylor expansion

⇒ Work in progress . . .



QCD at non-zero isospin asymmetry and its physical relevance

Early Universe at large lepton flavour asymmetries

Hunting the BCS phase

I First evidence:

coexistence of BEC and deconfinement

⇒ look at Polyakov loop
(associated with deconfinement)

However: need a more clear-cut criterion

I extension of Banks-Casher relation to µI 6= 0:

∆2 =
2π3

9
〈ρ(0)〉 (V → ∞, mud → 0, µI large)

[ Kanazawa, Wettig, Yamamoto ’12 ]

for mud 6= 0: ρ(0)→ ρ(mud)

search plateau for ρ(mud) at large µI

Need: • finer lattices • larger µI

• λ→ 0 extrap. • finite V study
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