

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

The DUNE experiment: neutrinos and the matter-antimatter asymmetry

Nuno Barros (LIP)

Brief history of the neutrino

Neutrinos, a desperate hypothesis to solve beta decay

FIG. 5. Energy distribution curve of the beta-rays.

"I have done something very bad today by proposing a particle that cannot be detected; it is something no theorist should ever do."

— Wolfgang Pauli (1930)

What do we know about neutrinos?

They are the only elementary neutral fermions

- Have no charge do not participate in electromagnetism
- Could be their own anti-particles (hold on to this thought)
- Come in three flavours
 - Paired to the corresponding charged leptons

Are very light

- Thought to be massless
- Neutrino oscillations imply massive neutrinos

Interact very weakly

- Only subject to Weak Interaction
- Neutrinos are always left handed
- Antineutrinos are always right handed

Where do neutrinos come from?

Neutrinos have mass

- The masses of neutrinos are much smaller than other particles
- Other particles get mass because they are "slowed down" by the Higgs field.
- Perhaps neutrinos get mass some other way?

Why are neutrino masses so much smaller than all other fermions?

Measuring the Mass of Neutrinos

Neutrinos are massless in the Standard Model

- Searches for neutrino mass use kinematic constraints
- Measuring its mass is not an easy feat
 - Usual techniques don't work
- Measure curvature in EM field:
 - Neutrinos are neutral : no curvature in EM field
- Measure energy and momentum of daughter particles:
 - Neutrinos are the lightest particles: don't decay into other particles
- Solution: Use quantum interference to probe the neutrino mass

 $M^2 = (E_1 + E_2)^2 - \vec{(p_1 + p_2)^2}$

Neutrino States

- Neutrinos come in three "flavours"
 - According to the lepton they produce when they have weak CC interactions
- Neutrinos come in three masses
 - But these states are not the same!!
- If the masses are non-zero, flavour can change when neutrinos propagate!

Neutrino Oscillations Short introduction with two flavours

• The weak flavour eigenstates (ν_e , ν_μ) are different from the mass eigenstates (ν_1 , ν_2)

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix}$$

• The weak states are mixtures of the mass states:

$$|\mathbf{v}_{\mu}\rangle = -\sin\theta |\mathbf{v}_{1}\rangle + \cos\theta |\mathbf{v}_{2}\rangle$$
$$|\mathbf{v}_{\mu}(t)\rangle = -\sin\theta (|\mathbf{v}_{1}\rangle e^{-iE_{1}t}) + \cos\theta (|\mathbf{v}_{2}\rangle e^{-iE_{2}t})$$

This leads to an oscillation probability

$$P_{\text{oscillation}}\left(\nu_{\mu} \to \nu_{e}\right) = \left|\left\langle\nu_{e} | \nu_{\mu}(t)\right\rangle\right|^{2} = \sin^{2} 2\theta_{12} \sin^{2} \left(1.27\Delta m_{21}^{2} \frac{L}{E}\right)$$

Fundamental oscillation parameters:

- θ: Magnitude of oscillation
- Δm^2 : period

Nuno Barros

DUNE

Experimental parameters:

- *L* : Distance from source to detector
- *E* : Neutrino energy

Neutrino Oscillations

How to plan a neutrino oscillation experiment

$$P_{\text{oscillation}}\left(\nu_{\mu} \to \nu_{e}\right) = \left|\left\langle\nu_{e} | \nu_{\mu}(t)\right\rangle\right|^{2} = \sin^{2} 2\theta_{12} \sin^{2} \left(1.27\Delta m_{21}^{2} \frac{L}{E}\right)$$

- Choose L and E adequate to the ranges of Δm^2 of interest
- Get a suitable neutrino source (accelerator, reactor, the Sun,...)
- Collect (a lot of) data and "see" neutrinos appearing and disappearing

Neutrino Oscillations Three flavours

Neutrinos are parametrised by 3 masses (m₁, m₂, m₃), 3 angles (θ₁₂, θ₁₃, θ₂₃) and an extra complex phase e^{iδ}

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{13}s_{23}c_{12}e^{i\delta} & c_{23}c_{12} - s_{13}s_{23}s_{12}e^{i\delta} & c_{13}s_{23} \\ s_{23}s_{12} - s_{13}c_{23}c_{12}e^{i\delta} & -s_{23}c_{12} - s_{13}c_{23}s_{12}e^{i\delta} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix} = \begin{bmatrix} 0.82 \pm 0.01 & 0.54 \pm 0.02 & 0.15 \pm 0.03 \\ 0.35 \pm 0.06 & 0.70 \pm 0.06 & 0.62 \pm 0.06 \\ 0.44 \pm 0.06 & 0.45 \pm 0.06 & 0.77 \pm 0.06 \end{bmatrix}$$

The phase e^{iδ} is responsible for matter/anti-matter asymmetry (CP violation)

$$P\left(\nu_{\mu} \to \nu_{e}\right) \neq P\left(\bar{\nu}_{\mu} \to \bar{\nu}_{e}\right)$$

Neutrino oscillations are consistent with being mass driven

Nuno Barros

- Is there CP violation in the lepton sector?
- Which mass hierarchy is correct?
- What are the precise values of the neutrino mixing parameters?

- What is the absolute mass scale?
- Are neutrinos Majorana or Dirac particles?
 - A topic for another day...

Neutrinos and matter/antimatter asymmetry

Where is all the antimatter?

Baryon asymmetry How do we get a matter-only Universe?

- Sakharov conditions (1967)
 - processes that violate baryon and lepton number conservation
 - high energy "non-perturbative" effects should exist in the Standard Model
 - departure from thermal equilibrium ✓
 - in the extreme Big Bang conditions
 - some difference between matter and anti-matter
 - is CP violation enough ?
- CP violation observed in K and B mesons
 - but it is not enough!
- CP violation could exist in neutrinos
 - Could be enough
 - Leptogenesis hypothesis

Neutrinos: Dirac or Majorana?

- Except for neutrinos, all fermions of the standard model are electrically charged
- Thus, there is a distinction between particle and antiparticle
- For neutrinos, this is not obvious particles could be identical to antiparticles, with only chirality/helicity distinguishing them
 - Instead of ν_e and $\overline{\nu}_e$ we would have ν_{e_L} and ν_{e_R}
 - And the following interactions would be:
 - $\nu_{e_L} + n \rightarrow p + e^-$
 - $\nu_{e_R} + p \rightarrow n + e^+$

Massive Majorada Neutrinos

- Neutrinos could their own antiparticles, with only chirality/ helicity distinguishing them
 - i.e., neutrinos could be Majorana fermions
- IF Heavy Majorana neutrinos exist, a "see-saw" mechanism can explain the smallness of masses
 - Dirac term m_D ~ 100 GeV (scale of W, Z, Higgs bosons)
 - If $m_N \sim \! 10^{14} 10^{15} \, GeV \,$ (GUT scale)
 - Then $m_\nu \sim 0.01$ 0.1 eV (expected from oscillations/limits)
 - Interesting coincidence
- IF neutrinos are Majorana fermions AND they violate CP they could help explain matter-antimatter asymmetry in the Universe
 - Leptogenesis

The DUNE Experiment

The DUNE Collaboration

- >1000 collaborators
- >190 institutions
- 34 countries
 - plus CERN

Continent-scale baseline

Sebastien Prince

Continent-scale baseline

21

Outline of the Experiment

Sebastien Prince

Outline of DUNE Far Site

Sebastien Prince

Sanford Underground Research Facility (SURF)

- Gold mine repurposed into underground laboratory
 - Deepest laboratory in the US (1.5 km underground 4300 m.w.e.)
- Two main campuses:

Far site

- Davis: Homestake, LUX (LZ), MAJORANA
- Ross: DUNE (possibly other ton-scale experiment in the future)

Far site Sanford Underground Research Facility (SURF)

Sanford Underground Research Facility (SURF)

Far site

Far site DUNE far site facility

- 5 main caverns
 - 4 detector + 1 support
 - Support : Cryogenics and DAQ
- Detectors based on LArTPC technologies
 - Same cryostat
 - 62 m x 19 m x 18 m
 - 17 kt total LAr mass (70 kt total)
 - 10 kt fiducial LAr mass (40 kt total)
- Detectors to be installed in a staged approach over several years
 - 2 detectors to be installed before beam starts (2026)

Outline of DUNE Far detector

Sebastien Prince

DUNE far detector

- LAr is both the target and detection medium
 - ~10 kt fiducial volume of LAr (17 kt total)
- Different LArTPC detector designs
 - Both horizontal and vertical drift designs
 - This talk will focus on horizontal drift
 - Technology confirmed for first module
- Integrated photon detection
- Modules will not be identical
 - Cryostats can accommodate different detector designs

DUNE far detector Single-phase LArTPC

- Technology used by ICARUS, ArgoNeuT, MicroBooNE, LArIAT
- At least two modules confirmed to use this technology
 - Including first module installed
- No signal amplification
 - Requires low noise electronics

Single-phase LArTPC

How does it work?

DUNE far detector Single-phase LArTPC

- Major Challenges:
 - Event reconstruction (monolithic detector)
 - Scaling of technology

- Technology advantages:
 - Ar is cheap and readily available
 - Good dielectric, can sustain very HV
 - 3D imaging (use image processing technology for event classification)
 - Full event topology

DUNE far detector Single-phase LArTPC

- Anode wires wrap around frame to allow two drift volumes (APA)
- Drift distance: 3.5 m
- E = 500 V/cm
 - Cathode voltage : -180 kV
- 150 APAs per detector module
 - 384 000 channels
 - Continuous digitisation of ~ms waveforms

Charge Signal Formation

34

Single-phase LArTPC Photon detection system

- X-ARAPUCA used as a light trap
 - WLS plate used to capture photons
 - Total internal reflection
 - Reflection from dichroic filter
 - Photons readout by SiPMs
- 6000 supercells of 48.8 cm x 10 cm x 0.8 cm

Café com Física @ UC, April 2021

35

Outline of DUNE Near Site

Sebastien Prince

- 1.2 MW proton beam @ 60-120 GeV (Plans exist to upgrade to 2.4 MW)
 - 10²¹ POT/year
- Oriented 5.8° down
 - 18 m artificial hill created specifically for this

- Horn-based on-axis wide-band neutrino beam
 - Allows sensitivity to **first and second** oscillation maxima
- Selectable polarity of horn current
 - (anti-) v_e appearance analysis
 - (anti-) v_{μ} disappearance analysis

Outline of DUNE Near Detector

Sebastien Prince

Near Detector(s)

Objective

- Constrain flux and cross section systematic uncertainties
- Can also measure 10⁶ ν interactions per year
- Concept for ND:
 - LArTPC (ArgonCube)
 - Multi-purpose detector (MPD)
 - Beam monitor (3D scintillator tracker spectrometer, 3DST-S)

Near Detector(s) DUNE-PRISM

- ArgonCube and MPD are on rails
 - 3DST-S does not move to monitor beam stability
- Up to 30 m side movement
- Deconvolve flux and cross section
- Each position yields a new flux measurement

3.5

4.0

4.5

Energy v_{μ} (GeV)

5.0

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Outline of DUNE The Physics

Sebastien Prince

DUNE Physics Program From MeV to GeV

Neutrino Oscillation Physics

- High sensitivity potential for leptonic CP violation
- Identify the neutrino mass hierarchy
- Precision oscillation physics and test of 3-flavor oscillations

Proton Decay

Target SUSY-favored mode p —> K+ ν

SN burst physics and astrophysics

- Galactic core collapse supernova, unique sensitivity to ve
- Design sensitivity to satellite galaxies
- Atmospheric Neutrinos
- Neutrino Interaction Physics (Near Detector)

DUNE: testing the neutrino model

We currently have a model that has several parameters

• But the data that it explains is rather limited

What predictions from the model can we check?

- L/E (or just L, or just E) oscillation behaviour
- Universality of the parameters (Δm^2 , θ)
- CP violation if δ is non-zero
- Neutrino oscillations give us a natural "interferometer"
 - Anything that distinguishes flavours (or mass states) alters the pattern

3-flavor neutrino survival probability

$$\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E_{\nu}}$$

CP violating term tells us if $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

Matter term depends on sign of $m_3^2 - m_1^2$

DUNE is designed with both of these terms in mind

- Measure neutrino spectra at 1300 km in a wide band beam
 - Near detector at FNAL : Measurement of ν_{μ} unoscillated beam
 - Far detector at SURF : Measure oscillated ν_{μ} and ν_{e}
 - Probe of neutrino oscillations (with matter effects) and mass hierarchy

- Measure antineutrino spectra at 1300 km in a wide band beam
 - Compare oscillations of neutrinos and antineutrinos
 - **Direct probe** of CP violation in the neutrino sector

- Determine MH, δ_{CP}, θ₂₃ octant, test 3-flavour paradigm and search for BSM effects (eg. NSI) in a single experiment
- Long baseline: matter effects are large (~40%)

(anti-) v_{μ} disappearance

• Wide-band beam:

- ν_{μ} disappearance and ν_{e} appearance over range of energies
- MH and δ_{CP} effects are **separable**

Physics of DUNE Nucleon Decay

- LAr detectors are sensitive to additional decay modes
 - proton decay modes
 - neutron decay modes
 - n-nbar oscillation modes (limited sensitivity)
- Explore tracking and calorimetry for reconstruction of final state decay products
 - low thresholds (no Cherenkov), PID
- Phenomenology is rich in the subject
 - Many modes identified (~90)
- Backgrounds estimated from atmospheric neutrino samples and using side bands
- Neutrino cross section measurements (from ND) constrain uncertainties in modes with π in the final state
- LAr imaging and kinematics allow ~linear sensitivity improvement with exposure

Nuno Barros

Physics of DUNE Supernova Neutrinos

- LAr detectors are mainly sensitive to ve through CC in ⁴⁰Ar
 - Other detectors are mostly sensitive to anti- ν_e through IBD
- Sensitivity to mass hierarchy

Possibility to see peak of neutronization

Burst of electron neutrinos produced by core neutronization burst

Events per 0.5 MeV per ms, 40 kton @10 kpc

Physics of DUNE Supernova Neutrinos

- LAr detectors are mainly sensitive to ve through CC in ⁴⁰Ar
 - Other detectors are mostly sensitive to anti- ν_e through IBD
- Sensitivity to mass hierarchy
- Possibility to see peak of neutronization
 - Burst of electron neutrinos produced by core neutronization burst

40 kton argon, 10 kpc

Physics of DUNE Low Energy Neutrinos

- Elastic Scattering (ES) on electrons
 - Both neutrinos and antineutrinos

 $\nu + e^- \rightarrow \nu + e^-$

• Charged Current (CC) on Ar

$$\nu_{e} + {}^{40}\!Ar \to {}^{40}\!K^{*} + e^{-} \qquad \left(E_{\nu_{e}} > 1.5 \ MeV\right)$$
$$\overline{\nu}_{e} + {}^{40}\!Ar \to {}^{40}\!Cl^{*} + e^{+} \qquad \left(E_{\nu_{e}} > 7.48 \ MeV\right)$$

• Neutral Current (NC) interactions on Ar

$$\nu + {}^{40}\!Ar \to {}^{40}\!Ar^* + \nu \qquad (E_{\nu} > 7.48 MeV)$$

s on Ar $(E_{\nu} > 7.48 \text{ MeV})$ $(E_{\nu} > 7.48 \text{ MeV})$

10 5

10

10³

10²

Cross section (x10⁻⁴³ cm²)

Possibility to separate the different channels by the classification of the associated photons from the K, Ar and CL de-excitation lines — specific spectral lines for CC and NC

v⁴⁰Ar NC

40 Ar NC

v_e⁴⁰Ar CC

v_e⁴⁰Ar CC

Physics of DUNE Solar Neutrinos: The hunt for the last flux

• Possibility to see the one missing neutrino flux (HeP solar v)

ProtoDUNE

Proving and optimising the technology of DUNE

Detector development and prototyping Why prototyping?

- Mitigation of risks associated with current detector designs
- Establishment of construction facilities required for full-scale production of detector components
- Early detection of potential issues with construction methods and detector performance
- Provides required calibration of detector response to particle interactions in test beam

Large scale prototypes at CERN ProtoDUNE(s)

- Use nearly identical cryostats for single and dual phase protoDUNE
 - Serve as prototype for the 10 kt cryostats
 - First run completed in 2019
 - Second (last) run planned for 2022

Sandbox to test all components of the DUNE far detectors

• Don't have a neutrino beam. Instead have a beam of particles that are the final states of neutrino interactions

ProtoDUNE(s) at CERN

ProtoDUNE(s) at CERN

ProtoDUNE-SP (single phase)

- Full scale prototype
 - Same voltage, drift distance as DUNE SP
- Both engineering and physics test
 - Test of design, installation, operation and stability
 - Use SPS beam to generate final states of neutrino interactions
 - **p**, π , e^- , **K** (for nucleon decay studies)
 - Mimic neutrino interactions in DUNE
- Measure particle response in LAr

ProtoDUNE Single Phase Results from run I

• First beam physics run from Sep - Nov 2018

- ~4x10⁶ triggers from pions, protons, kaons, electrons ranging from 0.3 - 7 GeV
- Stable running at 180 kV, ~8 ms electron lifetime, ~600 ENC
 - S/R of 38.3 before filtering
 - S/R of 40.3 after filtering
- Large sample of cosmic stopping muons used for energy calibration

ProtoDUNE Single Phase Results from run I

- First beam physics run from Sep Nov 2018
- ~4x10⁶ triggers from pions, protons, kaons, electrons ranging from 0.3 - 7 GeV
- Stable running at 180 kV, ~8 ms electron lifetime, ~600 ENC
 - S/R of 38.3 before filtering
 - S/R of 40.3 after filtering
- Large sample of cosmic stopping muons used for energy calibration

DUNE

ProtoDUNE Single Phase Summary of Run I

- 500+ days of data taking showed ProtoDUNE-SP has achieved high liquid argon purity (above 10 ms)
 - DUNE requirement: 3 ms
- Stable operation of HV system at nominal electric field (500 V/cm)
- Long term stability of the cold electronics over ~1 year period
 - S/N stable around ~40 over 1 year
- Opportunity to do extra tests for future technologies
 - Xe-Doped scintillator
 - Neutron generator for calibrations
- Currently work is being prepared for a second run in late 2021
 - Test of DUNE DAQ design (online software trigger)
 - Latest APA and photon detector (ARAPUCA) designs
 - Test calibration systems to be deployed in DUNE
 - Major LIP involvement

LIP and DUNE

What we do

DUNE Activities at LIP

Ongoing and planned

Ionisation laser

- Mirror movement with 2 degrees of freedom
 - Controlled by stepper motors and encoders
 - MicroBOONE precision: 0.05 mrad. Overall 2mm@10 m

• Laser intensity controlled by attenuator

Major goals:

- Map electric field distortions in drift volume to < 1%
 - Measure electron lifetime in whole drift volume

Laser Calibration

Major involvement of LIP (Lisbon, Coimbra and Mechanical Workshop)

Cal/DAQ interface

Alternative laser periscope

Dual rotary system adds a degree of freedom and solves low coverage due to FC shadows.

Laser position calibration

Calibration/Analysis Software

- DAQ data reduction
- Run control interface
- Data Quality

- Collaboration with LANL for production of
- Simulation and Analysis

Nuno Barros

DUNE

Café com Física @ UC, April 2021 67

Expected timeline for DUNE and ProtoDUNE

- Late 2021: 2022: ProtoDUNE-SP run II
 - Laser and neutron calibrations, new DAQ, new instrumentation
- 2024 : Installation of first DUNE module (SP)
- 2025 : Start installing second module
 - DUNE physics data starts with atmospheric neutrinos
- 2026: Beam operational at 1.2 MW
 - Start of DUNE physics data taking with beam
 - Total fiducial mass of 20 kt
- 2027: Add third FD module
- 2029: Add fourth FD module
- 2032: Upgrade to 2.4 MW beam

Summary

- DUNE will use a broadband beam and long baseline (1300 km) to make precise, simultaneous measurements of the mass ordering, the CP-violation phase, and the neutrino mixing angles.
- The large mass, high granularity, and deep underground location of the DUNE far detector also provide good sensitivity to supernova burst neutrinos and baryon non-conservation.
- First run with prototypes completed; now preparing for second run to happen next year
- LIP very actively involved in detector calibrations
 - both for DUNE and ProtoDUNE
 - Coordination of Calibration Consortium
- We look forward to start operation of first far detector module in 2024, and first data with beam, near detector, and first two far detector modules in 2026!

· LOODO D D D