E FISICA EXPERIMENTAL DE PARTICULAS

Iil LABORATORIO DE INSTRUMENTAGAOQ
» particulas e tecnologia

r\l i DEEP UNDERGROUND
m— NEUTRINO EXPERIMENT

The DUNE experiment: neutrinos and the matter-antimatter asymmetry

Nuno Barros (LIP)
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Brief history of the neutrino




| Neutrinos, a desperate hypothesis to solve beta decay

3 -
2 Electrons should have a single energy, not a continuous spectrum.
N
' —
n
1 | 1 !
N 3 12 i 20 x108
V (electron voltss Creazione

F1G. 5. Energy distribution curve of the beta-rays. A v

‘I have done something very bad today by
proposing a particle that cannot be detected; it
is something no theorist should ever do”

— Wolfgang Pauli (1930)
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| What do we know about neutrinos?

» They are the only elementary neutral fermions

» Have no charge - do not participate in electromagnetism

» Could be their own anti-particles (hold on to this thought)

Come in three flavours

» Paired to the corresponding charged leptons

Are very light
» Thought to be massless

» Neutrino oscillations imply massive neutrinos

Interact very weakly

» Only subject to Weak Interaction

Neutrinos are always left handed

» Antineutrinos are always right handed

Nuno Barros
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| Where do neutrinos come from?

Nuno Barros
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| Neutrinos have mass

» The masses of neutrinos are much smaller than
other particles

= Other particles get mass because they are “slowed
down” by the Higgs field.

= Perhaps neutrinos get mass some other way?

Nuno Barros DUNE

Fermions Bosons
First. Second First,
generation generation generation
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e Top quark gg.
162 ’_’

w Z
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107"
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Electron
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Why are neutrino masses so much
smaller than all other fermions?

Café com Fisica @ UC, April 2021



| Measuring the Mass of Neutrinos

Magnet

= Neutrinos are massless in the Standard Model AR -

are deflecled

_——> flooitte

» Searches for neutrino mass use kinematic constraints

» Measuring its mass is not an easy feat

» Usual techniques don't work

» Measure curvature in EM field:

» Neutrinos are neutral : no curvature in EM field
Py>my

» Measure energy and momentum of daughter particles:
Py, My

M2=(E1+E;)2~(p1+p2)2

= Neutrinos are the lightest particles: don't decay into other particles

= Solution: Use quantum interference to probe the neutrino
mass

Nuno Barros DUNE Café com Fisica @ UC, April 2021



| Neutrino States

» Neutrinos come in three “flavours”

= According to the lepton they produce when they have
weak CC interactions

» Neutrinos come in three masses

» But these states are not the same!!

= |If the masses are non-zero, flavour can change
when neutrinos propagate!

Nuno Barros DUNE
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| Neutrino Oscillations
Short introduction with two flavours

= The weak flavour eigenstates (ve, Vy) are different from the mass eigenstates (v, v2)
Ve _ [cosO sin® Vi
v,/  \—sin® cos8 ) \v,

» The weak states are mixtures of the mass states:

Vy > = —sinB|vy > +cosB|vy >
Vu(2) > = —sin® (|[vy > e E1) +cosO ([vy > e )

= This leads to an oscillation probability

|Poscillation <Uﬂ ~ ”e) =

2

L
= sin* 20, , sin® (1.27Am§IE

(vlu,m)
t

Fundamental oscillation parameters: Experimental parameters:
= 0: Magnitude of oscillation =« L.: Distance from source to detector
« Am?: period « I': Neutrino energy

Nuno Barros DUNE Café com Fisica @ UC, April 2021



| Neutrino Oscillations
How to plan a neutrino oscillation experiment

|Poscillation (Vu - Ve> = <Ve|1/ﬂ(t)>

Z

. : L {&—
= sin® 21912 sin’ (1.27Am2215 |

» Choose L and E adequate to the ranges of Am? of interest

» Get a suitable neutrino source (accelerator, reactor, the Sun,...)

= Collect (a lot of) data and “see” neutrinos appearing and disappearing

Survival and Transition Probability

17 T\ >\osc: ’
0.8 +

0.6 | P (ve = ve)

0.47 P (ve = 1)

0.2 |
Ol\‘/>

0 100 200 300 400 500 600 700 800 900 1,000
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| Neutrino Oscillations
Three flavours

= Neutrinos are parametrised by 3 masses (m4, my, ms), 3 angles (042,043,023) and an extra
complex phase ei®

(v) [ e, e, s.e)(v) [0824£0.01 0544002 0.15+0.03
v |2l s S e —Sussa®® s || Vo |~ [0-35 £ 0.06 0.70+0.06 062+ 0.06
0444 0.06 0.45+0.06 0.77 +0.06

v

i S
V. 53512 7 513603612€ 55301 T 5136535),€ C13Ca3 3

= The phase e is responsible for matter/anti-matter asymmetry (CP violation)

P (v, = ve) # P (v, = V)

Neutrino oscillations are consistent with being mass driven

Nuno Barros DUNE Café com Fisica @ UC, April 2021 11



| Neutrino Mass and Oscillations

What have we learned in the last ~20 years + Data-BG-Geov,
[ — Expectation based on osci. parameters
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Vr 0 —S923 (C23 —S13€ 0 C13 0 0 1 V3

Accelerator and
] SBL reactor
Atmospheric

Nuno Barros DUNE
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| Neutrinos
What haven’t we learned yet ?
= |s there CP violation in the lepton sector?
= Which mass hierarchy is correct?

= What are the precise values of the neutrino mixing parameters?

CKM PMNS normal hierarchy (NH) inverted hierarchy (IH)

Ha AE

2 2

m A /\m

d S b v, v, V; LS
s

DEEP UNDERGROUND
NEUTRINO EXPERIMENT

< s .
t o N

» What is the absolute mass scale?

= Are neutrinos Majorana or Dirac particles?

= Atopic for another day... \
SNQ

Nuno Barros DUNE Café com Fisica @ UC, April 2021 13



Neutrinos and matter/antimatter asymmetry




| Baryon asymmetry
How do we get a matter-only Universe?

= Sakharov conditions (1967)
» processes that violate baryon and lepton humber conservation v’
= high energy “non-perturbative” effects should exist in the Standard Model
» departure from thermal equilibrium v
= in the extreme Big Bang conditions

» some difference between matter and anti-matter

= is CP violation enough ?

positive charge

» CP violation observed in K and B mesons

» butitis not enough!

left handed
= CP violation could exist in neutrinos
= Could be enough
» Leptogenesis hypothesis electron

Nuno Barros DUNE

negative charge

right handed

positron

Café com Fisica @ UC, April 2021
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| Neutrinos: Dirac or Majorana?

= Except for neutrinos, all fermions of the standard model
are electrically charged

= Thus, there is a distinction between particle and
antiparticle

= For neutrinos, this is not obvious - particles could be
identical to antiparticles, with only chirality/helicity
distinguishing them

» Instead of v, and 7, we would have v,, and v,

L R

= And the following interactions would be:
"V, tn—>pte

s Y, tponte’

Nuno Barros DUNE

e Fe¢

negative charge  positive charge

vV # ye 2N

No charge to distinguish them
Are neutrinos Majorana particles?

V \Y
ﬂp momentum .@; momentum
~— spin —= spin
Neutrino Antineutrino
(left-handed) (right-handed)
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| Massive Majorada Neutrinos

= Neutrinos could their own antiparticles, with only chirality/
helicity distinguishing them

= i.e., neutrinos could be Majorana fermions

= IF Heavy Majorana neutrinos exist, a “see-saw"” mechanism

can explain the smallness of masses

= Dirac term mp ~ 100 GeV (scale of W, Z, Higgs bosons)
o [f my ~107% — 1015 GeV (GUT scale)

= Thenmy ~0.01-0.1 eV (expected from oscillations/limits) A
: - strong ~10°Gev
= Interesting coincidence
= T
: Gy ?
» [F neutrinos are Majorana fermions AND they violate CP S TOE
. ) - ic
they could help explain matter-antimatter asymmetry in = cc%[ ——
:electroweaq
the Universe weak :
« Leptogenesis " energy >

Nuno Barros DUNE Café com Fisica @ UC, April 2021
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The DUNE Experiment




| The DUNE Collaboration

* >1000 collaborators

 >190 institutions

e 34 countries /
- plus CERN S|

. S » ;
\ «’ \ 7 7 | ;
@’g n :‘\", / )

> ISPy

——

= = —

DUNE Collaboration Meeting, CERN January 2020

e
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| Continent-scale baseline
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| Continent-scale baseline
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| Outline of the Experiment

Sanford Underground
Research Facility

Fermilab

____________
-
....

Nuno Barros DUNE Café com Fisica @ UC, April 2021 22



| Outline of DUNE

Far Site

Sanford Underground
Research Facility

Fermilab

____________
-
....
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Far site
Sanford Underground Research Facility (SURF)

= Gold mine repurposed into underground laboratory
» Deepest laboratory in the US (1.5 km underground — 4300 m.w.e.)
» Two main campuses:

» Davis: Homestake, LUX (LZ), MAJORANA

» Ross: DUNE (possibly other ton-scale experiment in the future)

Nuno Barros DUNE

Café com Fisica @ UC, April 2021
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| Far site
Sanford Underground Research Facility (SURF)

Heys sereA

Jeys ssoy

Ross Campus &/%
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| Far site
Sanford Underground Research Facility (SURF)

Heys sereA

Weys ssoy

Davis Campus \

=

Ross Campus % /%
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| Far site
DUNE far site facility

» 5 main caverns

» 4 detector + 1 support
= Support: Cryogenics and DAQ

» Detectors based on LArTPC technologies
» Same cryostat
» 62mMXxT19mx 18 m
» 17 kt total LAr mass (70 kt total)
= 10 kt fiducial LAr mass (40 kt total)

» Detectors to be installed in a staged approach
over several years

» 2 detectors to be installed before beam starts
(2026)

Nuno Barros DUNE
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| Outline of DUNE

Far detector

Sanford Underground
Research Facility

Fermilab

____________
-
....
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| DUNE far detector

= LAris both the target and detection medium

» ~10 kt fiducial volume of LAr (17 kt total)

= Different LAFTPC detector designs
= Both horizontal and vertical drift designs
= This talk will focus on horizontal drift

= Technology confirmed for first module

» Integrated photon detection

» Modules will not be identical

» Cryostats can accommodate different detector
designs

Nuno Barros DUNE

Cryostat 4

Café com Fisica @ UC, April 2021
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DUNE far detector
Single-phase LArTPC

» Technology used by ICARUS, ArgoNeuT,
MicroBooNE, LArIAT

» At least two modules confirmed to use this
technology

= Including first module installed

= No signal amplification

= Requires low noise electronics

Nuno Barros DUNE

/

"Cathode )"_\_\ I
Plkne 7. F==
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Egrift

Production of both ionisation electrons
and scintillation photons (trigger, to)
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| Single-phase LArTPC

How does it work?

Nuno Barros

Cathode
Plane

Anode wire planes:

U

(—
Edrift ~ 500V/cm

Liquid Argon TPC

DUNE

V

Y

Lafe com kisica (@ UC, April 2021
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DUNE far detector
Single-phase LArTPC

» Major Challenges:
- Event reconstruction (monolithic detector)

- Scaling of technology

_ U vy W wre plare mavelorms,
Liquid Argan TRC =

T e S e e e e S he S e e L5

4 t.‘- e S N

P o
—

Nuno Barros

DUNE

« Technology advantages:
- Aris cheap and readily available
- Good dielectric, can sustain very HV

- 3D imaging (use image processing
technology for event classification)

- Full event topology

Café com Fisica @ UC, April 2021
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DUNE far detector
Single-phase LArTPC

= Anode wires wrap around frame to allow two drift
volumes (APA)

» Drift distance: 3.5 m

» E=500V/cm
» Cathode voltage : -180 kV

= 150 APAs per detector module
» 384 000 channels

» Continuous digitisation of ~ms waveforms

Nuno Barros DUNE

17 kton module
66 m (10 kton active volume)

Café com Fisica @ UC, April 2021
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| Charge Signal Formation

1.6
Induction by and collection of electrons on wires
1.4¢
&
O 1.2
| | |
§ L 20 40 60
S Time (us)
D o8t o
D .
£ os ! J | — U Induction
N : (small, bipolar)
0.4 /\ |
i | | | :
05 | | 1V Induction
' (small, bipolar)
! | | | .
’ | | = Y Collection
1 i i , (large, unipolar)
s & &5 & 9 |Current
Signal formation starts upon motion of | ' Out of Wire | 80 V4

the charge. (BNL)
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| Single-phase LArTPC

Photon detection system

= X-ARAPUCA used as a light trap

= WLS plate used to capture photons

» Total internal reflection

» Reflection from dichroic filter lonjg,

Ing partic /e

7

= 6000 supercells of 48.8cm x 10 cm x 0.8 cm

Readout \"5-';—*
» Photons readout by SiPMs

electronics

128 nm =
PTP [ A
L1,350 nm - - d
; Dichroic filter - Photon- sl
! TPB e detector bars
L2, 430 nm 7 .
' }‘}V
Filter Plate Holder g>' 3 . ’
Il = . R | e | =
""" Filter Plate Alignment = - b
Dichroic Filter Plate - 1 ra: . o
Reflective Vikuiti ESR k e ° _ [ — = | -
"~ MPPC Mount PCB ‘ .
- (two sides) »
L LA —_——
"TWLS Plate o = b
Readout
electronics \‘ ______
Nuno Barros
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| Outline of DUNE

Near Site

Sanford Underground
Research Facility

Fermilab

____________
-
....
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| Near Site

FNAL accelerator complex

Nuno Barros DUNE Café com Fisica @ UC, April 2021 37



| Near Site

Beamline

= 1.2 MW proton beam @ 60-120 GeV (Plans exist to upgrade to 2.4 MW)
» 1027 POT/year

» Oriented 5.8° down

» 18 m artificial hill created specifically for this

Apex of Embankment

Max. Height = 60"+

Elevation 800+ MI-10 Point of Extraction —
Near Detector Absorber Hall Target Hall Complex Bri 8
Service Building Service Building (LBNF-20) Fimary beam

Service Building

(LBNF-40) (LBNF-30) (LBNF-5)

Muon Shielding
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| Near Site

Neutrino beam

» Horn-based on-axis wide-band neutrino beam

= Allows sensitivity to first and second oscillation

maxima
1300 km 1300 km
Normal MH Normal MH
=5‘,j-ﬂrz =a"i-’ﬂ
= Selectable polarity of horn current Zor W -
T 010 = 83 =0 (eolar torm 8, = 0 (s0lar torm
= (anti-)ve appearance analysis £ o0
= (anti-)v, disappearance analysis

— O 1 10 1 10
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_ [ W) e T
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:3: 0.10 —— 8cp=90° NH — A 1\’;_,-4-""“—\ -,11‘1"- —¥. = LNJJ""‘-\\LJR —
l - - 1"\-41'—\..‘,_\_ - o E
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| Outline of DUNE

Near Detector

Sanford Underground
Research Facility

Fermilab

____________
-
....
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LAr Pump Motor

| Near Detector(s)

Feedthroughs

Stainless Steel Top Flange

Foam Insulation

u o bjective HV Feedthrough<

G10 Walls

= Constrain flux and cross section systematic uncertainties

Pixel Plane

= Can also measure 106 v interactions per year

= Concept for ND:

Field-Shaping Rings
Hydrostatic LAr Check Valves

G10 Floor

L] LAI‘TPC (ArgonCUbe) G10 Support Structure

Stainless Steel

Bottom Dummy Flange LAr Heat Exchanger

» Multi-purpose detector (MPD)
!

= Beam monitor (3D scintillator tracker spectrometer, 3DST-S)

n magnet

TP

3DST \
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| Near Detector(s)
DUNE-PRISM

ArgonCube and MPD are on rails

» 3DST-S does not move to monitor beam
stability

ArgonCube

Beam axis

Up to 30 m side movement ArgonCube

x107°

l_ [ T T T T T =TT =TT TTTT
= Deconvolve flux and cross section £ sl
I
> wf
o -
« Each position yields a new flux measurement § |
5 -
5 :
2 oF
© i
10 |

0.0 3.0 40 45 5.0
Energy v, (GeV)
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| Outline of DUNE
The Physics

Sanford Underground
Research Facility

Fermilab

____________
-
....
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| DUNE Physics Program
From MeV to GeV

= Neutrino Oscillation Physics E~O(few GeV)
= High sensitivity potential for leptonic CP violation
= |dentify the neutrino mass hierarchy

= Precision oscillation physics and test of 3-flavor oscillations

= Proton Decay

» Target SUSY-favored mode p —> K+ v

= SN burst physics and astrophysics
= Galactic core collapse supernova, unique sensitivity to ve

= Design sensitivity to satellite galaxies

» Atmospheric Neutrinos E~0(10 MeV)

= Neutrino Interaction Physics (Near Detector)

Nuno Barros DUNE Café com Fisica @ UC, April 2021 L4



| DUNE: testing the neutrino model

= We currently have a model that has several parameters

= But the data that it explains is rather limited

= What predictions from the model can we check?
» L/E (orjustL, orjust E) oscillation behaviour
= Universality of the parameters (Am?2, 0)

» CP violation if & is non-zero

= Neutrino oscillations give us a natural “interferometer”

= Anything that distinguishes flavours (or mass states) alters the pattern

Nuno Barros DUNE Café com Fisica @ UC, April 2021 45



| 3-flavor neutrino survival probability

+ 80123512513523 (012013 cosd — 512513523) COS A32 - sin Agl - sin AQ]

— 8013012023512513323 sin 0 sin A32 - sin Agl - sin Agl

+ 45%20123 (01220223 + 5325335?3 — 2C19C53512.593513 cos 5) sin? Aoy

- 80%35]?3533 ( 2813) ——— COS A32 SlIl Agl

41,

CP violating term tells us if P (v, — ve) # P (U, — Ve)

Matter term depends on sign of m% — m%

DUNE is designed with both of these terms in mind
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| Physics of DUNE e

LBL physics with a neutrino beam... 7 v

3

— dcp=0°NH

e
‘&%g&
ﬁ&t
XX

= 0cp=0°%IH

)
2
<
XXX
XX
9.
X
XX
KL

X
LK

SIRRSS

0

0

0

%

—— 8cp=90° NH -

—— 0cp=270°,NH

Sanford
Underground
Research o .. e,
Facility 2=

= Measure neutrino spectra at 1300 km in a wide band beam
= Near detector at FNAL : Measurement of vy unoscillated beam

» Far detector at SURF : Measure oscillated vy and ve

= Probe of neutrino oscillations (with matter effects) and mass hierarchy
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| Physics of DUNE

...and then repeat with antineutrinos — s
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= Measure antineutrino spectra at 1300 km in a wide band beam

» Compare oscillations of neutrinos and antineutrinos

= Direct probe of CP violation in the neutrino sector
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Physics of DUNE

Oscillation analysis strategy

» Determine MH, 0cp, 853 octant, test 3-flavour
paradigm and search for BSM effects (eg.
NSI) in a single experiment

= Long baseline: matter effects are large (~40%)

» Wide-band beam:

= Vy disappearance and Ve appearance over range
of energies

= MH and 0¢p effects are separable

Nuno Barros DUNE
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| Physics of DUNE

Nucleon Decay

= LAr detectors are sensitive to additional decay modes
= proton decay modes
= neutron decay modes

= n-nbar oscillation modes (limited sensitivity)

= Explore tracking and calorimetry for reconstruction of
final state decay products

» low thresholds (ho Cherenkov), PID

Phenomenology is rich in the subject

= Many modes identified (~90)

Backgrounds estimated from atmospheric neutrino samples
and using side bands

Neutrino cross section measurements (from ND) constrain

uncertainties in modes with min the final state

LAr imaging and kinematics allow ~linear sensitivity
improvement with exposure

Nuno Barros DUNE
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| Physics of DUNE

Supernova Neutrinos

= LAr detectors are mainly sensitive to ve through CCin 40Ar
» Other detectors are mostly sensitive to anti-v. through IBD

= Sensitivity to mass hierarchy

» Possibility to see peak of neutronization

» Burst of electron neutrinos produced by core neutronization burst
Neutronization 50 Accretion Cooling
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| Physics of DUNE

Supernova Neutrinos

= LAr detectors are mainly sensitive to ve through CCin 40Ar

» Other detectors are mostly sensitive to anti-ve through IBD

= Sensitivity to mass hierarchy

» Possibility to see peak of neutronization

= Burst of electron neutrinos produced by core neutronization burst

Nuno Barros
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| Physics of DUNE

Low Energy Neutrinos

= Elastic Scattering (ES) on electrons

» Both neutrinos and antineutrinos

)
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cm

-43

vV+e —Uv+e

» Charged Current (CC) on Ar

Cross section (x10

v, +YAr - OK* + e (Eye > 1.5 MeV)

D+ %0Ar o OCP 4 ot (E > 7.48 Mev)

10

0O 10 20 30 40 50 60 70 80 90 100
Neutrino energy (MeV)

» Neutral Current (NC) interactions on Ar

v+ YPAr - VAt 4 (EV > 7.48 MeV)

Possibility to separate the different channels by the classification of the associated photons
from the K, Ar and CL de-excitation lines — specific spectral lines for CC and NC
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| Physics of DUNE

Solar Neutrinos: The hunt for the last flux

= Possibility to see the one missing neutrino flux (HeP solar v )
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| Detector development and prototyping
Why prototyping?
= Mitigation of risks associated with current detector designs

» Establishment of construction facilities required for full-scale production of detector
components

= Early detection of potential issues with construction methods and detector performance

» Provides required calibration of detector response to particle interactions in test beam

35ton @ FNAL
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i A
ARl U |2
| ' 3. R .—_.4—,_ ‘:‘_ _
o

ProtoDUNEs @
CERN

Nuno Barros DUNE Café com Fisica @ UC, April 2021

56



| Large scale prototypes at CERN
ProtoDUNE(s)

= Use nearly identical cryostats for single and dual phase protoDUNE
» Serve as prototype for the 10 kt cryostats
» First run completed in 2019

Sandbox to test all components of the

» Second (last) run planned for 2022 DUNE far detectors

= Don’t have a neutrino beam. Instead have a beam of particles that are the final states of neutrino interactions

770 t total LAr mass
(ICARUS: 600 t)

Internal: 7.9 m (Transv) x 8.5 m (Parallel) x 8.1 m (Height)
Nuno Barros External: 10.8m (Transv) x 11.4 m (Parallel) x 11.0 m (Height). Fisica @ UC, April 2021
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| ProtoDUNE(s) at CERN

Cryogenics
external platform

Nuno Barros

DUNE

,
o

ProtobtinesP
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| ProtoDUNE(s) at CERN

W \\

at

 Control Room |

TP TR (R

, [
™ i
il il
Y —
Wel I
\_

Nuno Barros Café com Fisica @ UG, April 2021



| ProtoDUNE-SP (single phase)

HV

» Full scale prototype Feeditrough I oss recathrougns

= Same voltage, drift distance as DUNE SP

Bridge Beam

= Both engineering and physics test

» Test of design, installation, operation and
stability

» Use SPS beam to generate final states of
neutrino interactions

= p, 7, ¢, K(for nucleon decay studies)

Mimic neutrino interactions in DUNE

= Measure particle response in LAr
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| ProtoDUNE Single Phase

Results from run |

= First beam physics run from Sep - Nov 2018

= ~4x106 triggers from pions, protons, kaons, N N\ Top
electrons ranging from 0.3 - 7 GeV 3 & i e

= Stable running at 180 kV, ~8 ms electron

lifetime, ~600 ENC B - LATEED | -
Fieldr!

= S/R of 38.3 before filtering
= S/R of 40.3 after filtering

» Large sample of cosmic stopping muons used Bottom Field Cage
for energy calibration
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I Proto D U N E S i ngle Phase 5000 ProtoDUNE-SP Run 5387 Event 89663 @2018-10-17 20:58:57 UTC 10
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| ProtoDUNE Single Phase

Summary of Run |

= 500+ days of data taking showed ProtoDUNE-SP has achieved high liquid argon purity (above 10 ms)
» DUNE requirement: 3 ms

» Stable operation of HV system at nominal electric field (500 \V//cm)

= Long term stability of the cold electronics over ~1 year period

= S/N stable around ~40 over 1 year

= Opportunity to do extra tests for future technologies
= Xe-Doped scintillator

= Neutron generator for calibrations

= Currently work is being prepared for a second run in late 2021

= Test of DUNE DAQ design (online software trigger)
= Latest APA and photon detector (ARAPUCA) designs
» Test calibration systems to be deployed in DUNE

= Major LIP involvement
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LIP and DUNE




| DUNE Activities at LIP

Ongoing and planned

e Detector Calibration (DUNE and ProtoDUNE)

e LIP has leadership of the Calibration Consortium

e |onisation laser system

e Charge and optical collection calibration
using a high powered laser >

Neutron Capture: Side view projection
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| lonisation laser | -

4—\ Laser Box
266 nm Nd:Yag laser

Laser Box enclosure [::] Output Optics

1 Harmonic Doubling Crystals
2 Cooling System

3 Nd-YAG Crystal

4 Flash Lamp

Dichoric Mirror S Pockel's Cell
‘ Beam Separator
| -

Attenuator

P ! 3
- \‘\ Beam T 1 4 L
A 4 Dump -
4 @y Photodiode Laser Head

Green Alignment Laser

. / et \

Photodiode “Optical Bench”

e © Mirror movement with 2 degrees of freedom

target

l * (Controlled by stepper motors and encoders

* MicroBOONE precision: 0.05 mrad. Overall
2mm@10 m

e Laserintensity controlled by attenuator

Major goals:
steerable
o B - Vap electric field distortions in drift volume to < 1%

mirror
(M4)

cosdbottom » Measure electron lifetime in whole drift volume
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| Laser Calibration PN
Major involvement of LIP (Lisbon, Coimbra and Mechanical Workshop)

Laser position calibration

Alternative laser periscope

LR ] ] EEEEEEER

Calibration/Analysis Software
» DAQ data reduction

» Run control interface

rotation 1 Dat it
» Data Quali : : .
Q ¥ Collaboration with LANL for production of
» Simulation and Analysis parts
Coverage: 56.2 % XZ, Voxel 30 cm
. g RN — T
= 301 A ] [ ] " m J::E
E % I:IIIIIII::IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Dual rotary system adds a degree of | NSSSGTr—aars . seeriirrreerree
freedom and solves | rage due S e T
eedom and solves low coverage due : A e - O
to Fc ShadOWS- 11 lél . . 361. - .4&::1 s 7.%1 9(')1 — 10’51 ~ 12’01 :3’5: 1501

Z (beam) coordinate [cm]
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| Expected timeline for DUNE and ProtoDUNE

n Late 2029 2022: ProtoDUNE-SP run Il

» Laser and neutron calibrations, new DAQ, new instrumentation

» 2024 : Installation of first DUNE module (SP)

» 2025 : Start installing second module

» DUNE physics data starts with atmospheric neutrinos

» 2026: Beam operational at 1.2 MW

» Start of DUNE physics data taking with beam

» Total fiducial mass of 20 kt

» 2027: Add third FD module
» 2029: Add fourth FD module
» 2032: Upgrade to 2.4 MW beam
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| Summary

» DUNE will use a broadband beam and long baseline (1300 km) to make precise,
simultaneous measurements of the mass ordering, the CP-violation
phase, and the neutrino mixing angles.

» The large mass, high granularity, and deep underground location of the DUNE
far detector also provide good sensitivity to supernova burst neutrinos
and baryon non-conservation.

» First run with prototypes completed; now preparing for second run to happen
next year

» LIP very actively involved in detector calibrations
» both for DUNE and ProtoDUNE

» Coordination of Calibration Consortium

» We look forward to start operation of first far detector module in 2024, and first

data with beam, near detector, and first two far detector modules in 2026!
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