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What is Machine Learning?

Machine Learning (ML) 
The program learns from data what are the 
necessary rules to execute a task/objective 
defined by the user: Training

Traditional Computation 
The task is programmed by the user as a 
pre-defined set of rules/algorithms to 
apply to data 
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Training

From M. C. Romão LIP seminar 

https://indico.lip.pt/event/739/


ML tasks

Classification 
Discrete prediction 

Regression 
Real-value prediction 

Learning types

Supervised 
(E.g. Simulation in 
Particle Physics) 

Unsupervised 
(E.g. clustering)
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… an entire ecosystem

Scikit-Learn: excellent ML library to start with, Python-based 
Besides algorithms, it also contains data
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Shallow Learning 
Decision Tree

▪   input features 

▪ Labeled samples of data: blue/pink 

▪ Partitions the data to increase sample purity 

▪ Finds optimal criteria    to separate data 
categories 

▪ Category prediction based on the label of the 
majority samples of the end leaf 

▪ Core of the most popular algorithms used in LHC 
event classification (Boosted Decision Trees)

⃗x

xi > cix1 > c1
yes

yesnono

no

x3 > c3x2 > c2
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▪ Neural networks with many hidden layers, each with a given number of artificial neurons 
▪ Capable of highly non-linear representations of the data 
▪ In principle, can model any function 
▪ Architecture -> hyper-parameters: number of layers, number of neurons/layer, …

Deep Learning

Neuron
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Artificial Neuron

×

+ ∫

x
w

b ̂y

▪   is the input feature 

▪   is the target feature (or “label”) 

▪   are the model trainable parameters 

▪   is the output (model prediction)

x
y
w, b
̂y

Activation function 

▪ e.g. linear for regression 
▪ e.g. sigmoid for classification

∫

  f (x) =
1

1 + e−x
→ ̂y
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Loss function and Training Objective

Loss function   : measure of how good is    in predicting   

▪ e.g. Mean squared error:    

▪ e.g. Binary cross-entropy:   

Training objective: find    that minimise the Loss function

L ̂y y

L =
1
N

N

∑
i

(yi − ̂yi)2

L =
1
N

N

∑
i

yi ⋅ log( ̂yi) + (1 − yi) ⋅ log(1 − ̂yi)

w, b

×

+ ∫

x
w

b ̂y
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Gradient Descent and Back-propagation

Loss minimisation: descend the Loss surface 

▪  

▪ Loss gradient    

Back-propagate the Loss gradient (iteratively) 

▪    and update   

▪    and update   

▪  is an hyper-parameter that adjusts the learning rate

L = f ( ̂y)
∂L
∂ ̂y

∂L
∂w

=
∂L
∂ ̂y

∂ ̂y
∂w

w ← w−α
∂L
∂w

∂L
∂b

=
∂L
∂ ̂y

∂ ̂y
∂b

b ← b−α
∂L
∂b

α

Loss surface

w

b
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Practicable Deep Neural Networks

Many layers + many units 
▪ Vanishing gradient: new activation functions 

made training possible (ReLU) (~2010) 

▪ Advances in hardware: GPU increased speed 
of computation by 100 (~2010) 

▪ APIs: Keras, Tensorflow (2015) 

Deep learning 

▪ Many parameters to estimate:  

▪ Data thirst

{ ⃗w , ⃗b }



ML in Collider Physics

Rich ground for ML applications 

LHC is an enormous source of data 
• Number of collisions: 40 MHz, 1kHz recorded 
• High data dimensionality: O(100 M) readout units 

• Involves also large simulation datasets
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Anatomy of a collider event 
CMS example

• Identify collision vertices 
and particles: 

• Track-finding 
• Electron/jet/muon 

ID/reconstruction 
• Measure energy, 

momenta, electric charge 
• Jet flavour? 
• Signal topology? 

ML is key in many of these 
tasks



How to represent data? 
… part of the definition of the ML algorithm 
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Tabular Image Graph

[arXiv:1511.05190] [arXiv:1807.09088]

Sequences

[ATL-PHYS-PUB-2017-003]

https://arxiv.org/pdf/1511.05190.pdf
https://arxiv.org/pdf/1807.09088.pdf
http://cdsweb.cern.ch/record/2255226/files/ATL-PHYS-PUB-2017-003.pdf
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Observation of    in CMS H → γγ

Flagship of ML application in the LHC 
• 2014: Shallow learning, before Deep 

learning revolution

1407.0558

https://arxiv.org/pdf/1407.0558.pdf
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Observation of    in CMS H → γγ 1407.0558

PHOTON IDENTIFICATION 

• BDT discriminates photons from fakes ( ): 
• Shower shape and isolation variables 

• Photon 

π0

pT, η

Boosted Decision Trees used in many aspects of the analysis 

• Selection of collision vertex 
• Photon identification 
• Photon energy corrected with BDT regression 
• Several BDT to extract signal in different categories 
• … 

Signal observed with 5.2  significance 
ML impact on signal sensitivity equivalent of 50% more data

σ

https://arxiv.org/pdf/1407.0558.pdf
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Now… ML still ubiquitous on Higgs Physics

Main Higgs decay modes were observed! 

Higgs cross-section measurements: 
Many production/decay channels 
Differential cross-section or in bins of the phase space 

• : NN defining event categories (signal/bkg-like) (CMS) or 
as observable for fit (ATLAS) 

• : multi-class BDT to categorise 44 phase space bins (ATLAS/CMS) 

• : Deep NN signal classifier used as fit variable in the VBF 
production channel (ATLAS) 

• : Convolutional NN that reduces chance of tau mis-ID 

• : BDT for signal identification 

See Moriond talk on the CMS/ATLAS Higgs status

H → ZZ * → 4ℓ

H → γγ
H → W W *

H → ττ
H → bb

ATLAS-CONF-2020-027

http://moriond.in2p3.fr/2021/EW/slides/1_sm_08_David_Shope.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-027/


Eg:  multi-class Boosted Decision Tree 
Identify the 44 signal categories

H → γγ

ATLAS-CONF-2020-026

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-026/
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Jet Flavour identification

Essential ingredient for many physics analysis (top, 
Higgs…) 

Per-jet probability of originating from {b, c, uds}
quarks 

Explore unique characteristics of heavy flavour-jets 
▪ “Large” lifetime of b/c-hadrons (~ps) 
▪ Displaced secondary vertex 
▪ Soft lepton from b/c hadron decay
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Jet Flavour identification 
State-of-the-art Deep Learning

New DeepCSV (DNN) using same variables of 
shallow predecessor 
▪ Number of secondary vertices (SV) 
▪ Number of tracks from SV 
▪ SV mass 
▪ Radial distance  
▪ Jet  
▪ … 

Improved efficiency

ΔR(track, jet)
pT, η

1712.07158

https://arxiv.org/pdf/1712.07158.pdf
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Jet Flavour identification 
Deep Sets

Tagging generally involve a variable number of inputs (tracks) 

Usually addressed by Recursive NN 
▪ Natural language processing, order matters (words in sentence) 

When order does not matter 
▪ Replace RNN by DNN + sum 
▪ Less complex 
▪ 4x faster

ATL-PHYS-PUB-2020-014

https://cds.cern.ch/record/2718948/files/ATL-PHYS-PUB-2020-014.pdf
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Classification of Quenched Jets 

Jet quenching  is one of the most important signatures of the quark-gluon plasma (QGP) formed at 
collisions of relativistic heavy ion collisions at the LHC

▪ Quenched jets are useful probes to study this particular form of matter 

▪ Classification of quenched jets allow to obtain pure samples of jets which have 
interacted with the medium 

▪ Useful, f.i., to study the mechanism of jet suppression and the QGP properties
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very soon 
on arXiv

Convolutional NNs to classify Quenched Jets 

Classification of jet images trained on jets simulated in vacuum versus jets with QGP medium 

   imagepT

   imagenconst

Convolution Layer 1 
 kernel 

Leaky ReLu activation
(3 × 3)

  (35 × 35)

(17 × 17) (8 × 8) (3 × 3) (1 × 1)

Convolution 
Layer 2

 
filters

N
 

filters
N  

filters
N  

filters
N

∫

Convolution 
Layer 3

Convolution 
Layer 4

Dense Layer  
Sigmoid  

activation

Image pixels :  
▪ Jet  
▪ Number of jet 

constituents

(η, ϕ)
pT

• The convolutional kernel have the parameters to learn:  

• Scan the image looking for successively detailed discriminant patterns

{ ⃗w , ⃗b }

L. Apolinário et al.

https://arxiv.org
https://arxiv.org
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CNNs to classify Quenched Jets

• Good separation between vacuum and medium jets 
• CNN output correlated with energy loss 
• Interesting result since medium sample is not pure in 

quenched jets
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ML in the future of collider physics 
HL-LHC upgrade 

Many challenges and opportunities where ML can be a handle 

▪ High pile-up: collisions per bunch crossing   
▪ Noisy environment: ambiguous track hits reconstruction, collision vertex finding, pile-up energy subtraction,… 
▪ Big data phase: 3000 fb , increased need for simulation

33 → 140

−1
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Calorimeter simulation 
Generative algorithms with Adversarial training

Measurements rely on comparisons between data and simulation (~1000 M for a typical analysis) 
▪ Calorimeter showering is the heaviest load (particle multiplicity and overlap) 
▪ Generate synthetic showers given a particle and the calorimeter geometry 
▪ Train the generator by comparing synthetic to Geant4 showers

ATL-SOFT-PUB-2018-001

 simulationπ0

http://cdsweb.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf


ML role in the search for New Physics 
Towards generic signal detection

A primary LHC goal remains to conquer: no sign of New Physics so far!… 

ML used in direct searches, classifiers trained to recognise specific signals 

Can ML contribute to increase the generality of NP searches, extending their reach?

27



Generic searches for New Physics 
Non-ML

Categorise events by particle type/multiplicity and search for disagreement with SM 
▪ Low sensitivity to small deviations of the Standard Model (anomalous couplings) 
▪ Can’t help us at trigger level…

282005.02983 2010.02984

https://arxiv.org/pdf/2005.02983.pdf
https://arxiv.org/pdf/2010.02984.pdf


Anomaly Detection as a New Physics search

• Anomaly detection: many techniques available… 

• What is more suited to HEP collider searches? 

Many dreams… 

• Generic searches, fully independent of BSM physics hypothesis 

• Capable of analysing full event and different event topologies at once 

• Detect resonances but also small deviations from SM physics 

• Trigger-level application 

• Utmost importance: ensure that all BSM events are recorded…
29



“Finding New Physics 
without learning 
about it: Anomaly 
Detection as a tool for 
Searches at Colliders”

30

M. C. Romão, N. F. Castro, R. Pedro

Eur.Phys.J.C 81 (2021) 1, 27

• Physics case study: tZ+X final states, 
dilepton channel 

• How does anomaly detection (AD) perform 
w.r.t. fully-supervised DNNs? 

• Survey of four AD techniques: 

• Auto-Encoder 

• Deep SVDD 

• Isolation Forest 

• Histogram-Based

https://link.springer.com/article/10.1140/epjc/s10052-020-08807-w


Auto-Encoder

▪ Training objective is to minimize input 
reconstruction loss 

▪ More common events will be better 
reconstructed 

▪ Reconstruction error is a measurement 
of anomaly/outlyingness

31



Deep-Support Vector Description 
 [ref]

▪ Map the data into an embedding 
space using a DNN 

▪ Train to minimise the distance of the 
data points to the center of the 
distribution in this space 

▪ The rarer events will be further away 
▪ Distance to the center used as the 

anomaly score

3232

http://proceedings.mlr.press/v80/ruff18a/ruff18a.pdf


Anomaly Detection methods 
Shallow techniques

Histogram-based outlier detection (HBOS) [ref]: 
▪ Histogram constructed per input feature j 
▪ Anomaly score based on the bin height/density 

(Hist) where a new instance falls in 

Isolation Forest (iForest) [ref]: 
▪ Randomly pick a feature and split value to 

recursively partition the data 
▪ Anomaly score given by the inverse of how 

many nodes it took to isolate the event

P
j Log2(Histj)

Both are fast and scalable to 
high-dimensional data with 

many instances
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https://www.semanticscholar.org/paper/Histogram-based-Outlier-Score-(HBOS)%3A-A-fast-Goldstein-Dengel/405bde43709582b0026c0fd6f0afe2c3c57f792e
https://ieeexplore.ieee.org/document/4781136


Data: MADGRAPH5+Pythia 8+Delphes simulation 

Benchmark BSM signals containing TZ+X final states: 
• Vector-like T-quark pairs 
‣ T-quark mass = {1, 1.2, 1.4} TeV 
‣ Via SM gluon fusion 
‣ Via BSM 3 TeV heavy gluon production 

• tZ production with FCNC effective vertex 
 
SM dominant processes: Z+jets, top pairs, di-boson 
• Total ~13 M events 
• Good statistical representation of all phase space 
‣ Samples generated in slices of pT (or scalar HT)

Benchmark signals and data simulation

34

tZ via FCNC

TTbar via SM gluon fusion

g/G



Training and input 
features

Pre-selection  
• 2 leptons 
• at least 1 b-jet 
• HT>500 GeV 

Input features 
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Training 
▪ Semi-supervised learning 
▪ Train the AD methods on the SM data
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Full features

Comparison of the AD methods 
for benchmark signals

▪ We fit the AD output distributions to compute the upper 

limits on the signal strength ( ) of the benchmark signals 

▪  

▪ Only statistical uncertainties are considered 

▪ Maximum sensitivity degradation around O(10) 

▪ AE is competitive for VL-tops (heavy resonance) 
▪ Deep SVDD seems to be more suitable to small SM 

deviations (such as FCNC)

μ
μ =

σobs

σtheo

Upper limits on μ normalised to 
Supervised DNN 
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Summary

▪ ML is a universal tool in collider experiments, increasing the efficiency of many applications 
▪ Started well back-ago before Deep Learning revolution 
▪ Now we use increasingly lower information with deeper and more complex architectures 
▪ Data representation as images, sets, graphs… to take advantage of the most powerful algorithms 
▪ Deep Learning is also a key to address future challenges (simulation, tracking…) 

▪ Anomaly Detection is an imminent path for the HL-LHC big data phase, very active R&D 
▪ Our conclusions so far: 

▪ Deep Learning AD models outperform the shallow ones 
▪ … but the methods have different notions of anomaly 
▪ Different AD algorithms are suitable to isolate different types of BSM physics 
▪ Use them in a complementary way?

38
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Anomaly Detection 
Training

Shallow methods: 
▪ Principal component rotation to remove linear 

correlation between features 

Deep SVDD: 
▪ DNN without bias terms (prevent trivial solutions)  

Deep methods: 
▪ Latent space dimension fixed to 16 
▪ Activation function LeakyRelu 
▪ Hyper-parameter have Bayesian optimisation based on 

predefined parameter range

▪ Semi-supervised learning 
▪ Train the AD methods on the SM data

40
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Correlation between 
AD scores

▪ Shallow methods very correlated 
▪ Most methods are not correlated 
▪ Different notions of outlyingness 
▪ Events in the10% outlier quantile:
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