

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPÉRIMENTAL DE PARTÍCULAS

Space Radiation Environment and Effects: From Earth to Jupiter

Marco Pinto mpinto@lip.pt

Café com Física

Departamento de Física – Universidade de Coimbra 28/10/2020

What constitutes the space radiation environment?

Its not all photons!

Anomalous cosmic rays

Galactic and extra-galactic cosmic rays

Galactic and extra-galactic cosmic rays

Neutrinos ----

Solar flare neutrons and Υ-rays

Solar X-rays

Solar flare electrons, protons and heavy ions

Anomalous

cosmic rays

Galactic and extra-galactic cosmic rays

Neutrinos

Anomalous cosmic rays

> Jovian electrons

Solar flare neutrons

Solar x-rays

Solar flare electrons, protons and heavy ions

Galactic and extra-galactic cosmic rays

Neutrinos

Solar flare neutrons and Y-rays

Solar x-rays

Anomalous cosmic rays

> Trapped particles

Solar flare electrons, protons and heavy ions

Jovian

electrons

Anomalous cosmic rays

Galactic and extra-galactic cosmic rays

Induced radiation

Solar flare neutrons and Y-rays

Solar X-rays

Jovian electrons

Trapped particles

Solar flare electrons, protons and heavy ions

A bit of history

Solar Cycle

Time (years)

0.0

Solar Cycle

10

Galactic Cosmic Rays

Galactic Cosmic Rays

Trapped belts

Space Radiation Environment

Van Allen Radiation Belts

Protons and electrons AP-8 and AE-8 models

Galactic Cosmic Radiation (GCR)

p,a, O and Fe ISO 15390 Solar min: 30 Jan 2009 Solar max: 30 Jan 2014 1 AU from Earth

Protons Integrated 14 day SEP event of December 2006

SEP event

Planetary Science

Solar Physics

Astrophysics

Why does it matter?

Astronaut safety

Mission reliability

Cumulative

Premature aging

Cataracts

Increased cancer risk

Acute

Impaired eye-sight

Psychological distress

Radiation sickness

~ 2.4 mSv annual dose from natural sources on Earth

20 mSv annual limit for radiation workers on Earth

Career Exposure Limits for NASA Astronauts by Age and Gender*					
Age (years)	25	35	45	55	
Male	1.50 Sv	2.50 Sv	3.25 Sv	4.00 Sv	
Female	1.00 Sv	1.75 Sv	2.50 Sv	3.00 Sv	

Mission Type	Radiation Dose	
Space Shuttle Mission 41-C (8-day mission orbiting the Earth at 460 km)	5.59 mSv	
Apollo 14 (9-day mission to the Moon)	11.4 mSv	
Skylab 4 (87-day mission orbiting the Earth at 473 km)	178 mSv	
ISS Mission (up to 6 months orbiting Earth at 353 km)	160 mSv	
Estimated Mars mission (3 years)	1,200 mSv	

Cumulative Total Ionizing Dose – TID Displacement Damage Dose – DDD

2014-2018

DOI: 10.1109/TNS.2019.2900398

Acute

Single Event Effects – SEE

Cumulative Total Ionizing Dose – TID Displacement Damage Dose – DDD Acute Single Event Effects – SEE

2014-2018 SIOS MTB GAN

Anomalous cosmic rays

Galactic and extra-galactic cosmic rays

Induced radiation

Solar flare neutrons and Y-rays

Solar X-rays

Jovian electrons

Trapped particles

Solar flare electrons, protons and heavy ions

The JUICE Mission

Cosmic Vision (2015-2025) L-class Mission

> Launch 2022

Arrival 2030

> End 2033

Radiation Environment

Radiation Environment

Credit: S. Bourdarie @ 2014 NSREC course

Radiation Environment

DATA: EPD measurements Galileo G29 encounter with Ganymede in December 2000

Scientific Instruments

RADEM ESA/ESTEC Contract 1-7560/13/NL/HB

Electrons 0.3-40 MeV

Protons 5-250 MeV

Heavy Ions (its complicated)

Peak Fluxes to 10⁹ p/cm²/s

Dose assessment

RADEM – Detector Overview

Based on traditional Stack Detectors SREM, MFS, BERM, etc

Proton Detector Electron Detector Heavy Ion Detector (PDH) (EDH) (HIDH)

Directional Detector

New concept fully developed at LIP

Electrons >300 keV Measures 28 directions • 4 zenithal directions • 9 azimuthal directions 3 background sensors

RADEM – Detector Overview

Based on traditional Stack Detectors SREM, MFS, BERM, etc

Proton Detector Electron Detector Heavy Ion Detector (PDH) (EDH) (HIDH)

New concept fully developed at LIP

Directional Detector (DDH)

Electrons >300 keV Measures 28 directions • 4 zenithal directions • 9 azimuthal directions 3 background sensors

Stack Detector

50 MeV 500 MeV

Stack Detector

50 MeV 500 MeV

e

protons * electrons (collisional) * electrons (total) Stopping Power (MeV.cm2/g) 01 r01 10¹ 10² 10^{-1} 100 10³ Energy (MeV)

Readout

□ 3x ASIC VATA 466 – developed specifically for RADEM

- PDH+HIDH
- EDH
- DDH
- 1 MHz max count rate

Programable Low and High Thresholds

Beam tests

EDH ~15°

(M. Pinto et al., DOI: https://doi.org/10.1016/j.nima.2019.162795)

Developing Directionality Detector

Design studied with Geant4

Electrons >300 keV Measures 28 directions • 4 zenithal directions • 9 azimuthal directions

3 background sensors

>700 solids GUIMesh tool developed

(M. Pinto and P. Gonçalves, DOI: https://doi.org/10.1016/j.cpc.2019.01.024)

DDH – Count rate

(M. Pinto et al, DOI: <u>10.1109/TNS.2019.2900398</u>)

DDH – Baseline Directional Response

DDH – Background

(M. Pinto et al, DOI: <u>10.1109/TNS.2019.2900398</u>)

Radiation Level Estimation

Full geometry imported as tessellated solids via GDML with GUIMesh

Spacecraft described as Aluminum shielding equivalent

(M. Pinto and P. Gonçalves, DOI: https://doi.org/10.1016/j.cpc.2019.01.024)

Radiation Level Estimation

Mission Dose = 1.26 Mrad behind 1 mm Al. Shielding

129 sensitive components - Mostly from JUICE Preferred Parts List

- Total Ionizing Dose
- ✤ 110 EEE components 100-300 krad
- Silicon Trackers 1 Mrad

Displacement Damage Dose
 >2E+011 50 MeV proton eq. fluence

Single Event Effect sensitivity:
ASIC
Oscillator
PROM
SRAM

Radiation Level Estimation

Testing

ESA Contract No: RFQ/3-13975/13/NL/PA

Testing ESA Contract No: RFQ/3-13975/13/NL/PA

RADEM – Scientific Opportunities

Interplanetary radiation Environment (Jovian electrons)

Solar Energetic Particles

Galactic Cosmic Rays

Venus CRAND

Earth Radiation Belts Cross-calibration (BERM and others)

Mars CRAND

RADEM – Scientific Opportunities

Jupiter CRAND as a source of protons

Jupiter-Moon interactions

Constrain Acceleration Mechanism

Astrobiological implications of radiation

Anomalous cosmic rays

Galactic and extra-galactic cosmic rays

Induced radiation

Solar flare neutrons and γ-rays

Solar X-rays

Jovian electrons

Trapped particles

Solar flare electroms, protons and heavy ions

Mars Radiation Environment: dMEREM

ESA contract 19770/06/NL/JD

Modelling Mars radiation (Geant4)
Local treatment (Physical properties)
Validation

Risk assessment

Geostationary orbit - Alphasat

Technology Demonstration Payload 8 (TDP8) ESA/ESTEC CONTRACT 3-14025/13/NL/AK

MultiFunctional Spectrometer (MFS) DOI: <u>10.1109/TNS.2018.2854161</u> DOI: <u>10.1109/TNS.2017.2714461</u>

 ESA/ESTEC CONTRACT 4000115004/15/NL/RA/ZK
 Component Technology Test-Bed (CTTB) DOI: <u>10.1109/TNS.2020.3013035</u>

3 experiments:

- GaN transistors (Aveiro)
- Optical Links (Valencia)
- Flash-NAND Memories

Geostationary orbit - Alphasat

Reconstruction Algorithms

Radiation Environment Modelling Benchmarking

Radiation Effects

BepiColombo

Launched in 2018

Two spacecrafts

Future work

RADEM Calibration and preparation of data analysis

dMEREM benchmarking

MFS Machine learning spectral deconvoluting CTTB Radiation Effects Analysis

BERM Data Analysis