Silicon detectors for a Compton telescope

Nicolas de Séréville (nicolas.de-sereville@ijclab.in2p3.fr) Laboratoire de Physique des 2 Infinis Irène Joliot Curie Université Paris Saclay

Background

All material presented comes from ongoing R&D at former IPNO, now IJCLab

- Aim is to develop a $\gamma\text{-ray}$ imaging device in the MeV range based on Compton interaction

 γ -rays from astrophysical sources

e-Astrogam payload

COCOTE project (2012 – 2014; CNRS funding)

γ -rays from nuclear power plants

ComptonCAM project (2017 – 2021+; ANDRA funding)

Compton imaging principle

Scatter plane(s)

Calorimeter

 $E_{\gamma} = E_1 + E_2$ $\cos(\theta) = 1 + m_e c^2 \left[\frac{1}{(E_1 + E_2)} - \frac{1}{E_2} \right]$

- Angular resolution and sensitivity depends on the precision of the energy and position measurements in the scatter and calorimeter detectors
- Several possibilities for the scattering material:
 - → scintillator, germanium, silicon
- Advantages of silicon
 - Low Z materials favor Compton scattering crosssection
 - Limited Doppler broadening
 - Good energy resolution and noise performances
 - Segmentation relatively easy

The BB7 detector

- DSSSD (BB7 model) from Micron Semiconductor Ltd.
 - Active surface: 64 x 64 mm²
 - Thickness: 1.5 mm
 - Strip number: 32 + 32
 - Strip pitch: 2 mm
 - Bias: ~ 400 500 V
- Custom packaging
 - PCB on two sides of the DSSSD
 - Total size: 82 x 82 mm²
- PCB hosts biasing resistors and DC coupling capacitance \rightarrow AC coupled

Design allow easy combination to form a plane with 2 x 2 DSSSD (~ 4U like)

Detector testing

Testbench for leakage current measurement in climatic chamber

Results

Possiblity to perform measurement for up to 6 DSSSDs at the same time

Readout electronics

GALAO system from IDEAS company hosting a VATA 460.3 ASIC

ASIC performances

1000

800

600

p-side

VATA460.3 characteristics

- 32 charge preamplifiers
 - Bipolar, dynamic range \pm 90 fC
 - Shaping: 2 μs (spectro), 0.6 μs (trigger)
- 32 ADCs (10 bits)
- Selective data readout

BB7 + GALAO system

Results with ²⁰⁷Bi source

Results with ²⁴¹Am source

Resolution (FWHM) : ≈ 12.3 keV

Custom electronic boards

Front-end Electronic Board

Back-end Electronic Board

Zynq module:

- Processor (linux)
- FPGA Xilinx
- Ethernet interface...
- \rightarrow slow control, digital readout

DSSSD + Front-end electronic board

First results

Data obtained with ²⁰⁷Bi source

- Coincidence data between the p- and n-side
- Raw data, all strips
- On-going analysis...

Toward a 4U design

Thank you for your attention