EIRSAT-1 Gamma-ray Detector Development

David Murphy – david.murphy@ucd.ie 2 Oct 2020 Coimbra AHEAD2020 Progress Meeting on Space Experiments for HE Astrophysics & <u>Multi-messenger Astronomy</u>

- 4×4 array of Sensl C-series SiPMs
- 28mm × 28mm × 20mm LaBr₃:Ce
- Later, 25mm × 25mm × 20mm CeBr₃

Ulyanov et al. 2016 – NIM A, Ulyanov et al. 2017 – NIM A

SIPHRA

- Developed by IDEAS
- 16 (+1) channel SiPM readout
- Designed for use in space latch-up immunity, SEU mitigation, error correction
- Based on requirements of GRD

Meier et al. 2016 – AMICSA, Ulyanov et al. 2017 – IEEE

Late 2017 GMOD

- Based on previous GRD detector built at UCD
- Designed to fit in approx 0.5U of a CubeSat
- Uses several novel technologies:
 - SiPMs by Irish company SensL
 - SIPHRA ASIC by IDEAS
 - Modern, bright scintillator CeBr3

GMoDem Gamma-ray Module Demonstrator

- Detector
 - CeBr
 - J-series SiPM arrays
 - SIPHRA
 - \circ Galao
- Bias Supply
 - Inhouse design & production
- Readout & Storage
 - Raspberry Pi (via Python)
 - USB Flash Memory
- Telemetry
 - GPS + Altitude
 - \circ Pressure
 - Temp (SiPM, internal, external)
- Structure
 - Aluminium extrusion
 - 600mm × 300mm × 200mm

GMoDem

- Launch from NASA Columbia Scientific Balloon Facility
- Float altitude 37.4km for >5 hours

GMoDem - Telemetry

GMoDem – Time Resolved Spectrum

GMoDem – Flight Spectrum

- Detector recovered with very loose and warped enclosure
- Preflight Sodium 22 calibration: 511keV @ Ch1526
- Inflight: 511keV @ Ch 798

GMoDem

• Poor optical coupling explains bad resolution – reduction in scintillation light of $\sim 2 =$ degradation in resolution of $\sim \sqrt{2}$

Development Strategy

SPACEWEEK.IE

Architecture / Dev Strategy

Detector Dev Model

Galao	SIPHRA (IDEAS Breakout)	Adapter	GMOD Detector
-------	-------------------------------	---------	------------------

SIPHRA Dev Model

SIPHRA BGA

SIPHRA Dev Model

SIPHRA CoB

CoB Interface PCB

SIPHRA CoB with J-Series Array and CeBr3

Final EIRSAT-1 + GMOD

GMOD EQM

Vibration – Levels and Durations

Frequency (Hz)	Level	Unit
Sine		
5 - 21	11	mm
21 - 60	20	g
60 - 65	20 - 6	g
65 - 100	6	g
Random: 9.47g RMS		
20	0.057	g²/Hz
20 - 153	0	dB/oct
153	0.057	g²/Hz
153 - 190	7.67	dB/oct
190	0.099	g²/Hz
190 - 250	0	dB/oct
250	0.099	g²/Hz
250 - 750	-1.61	dB/oct
750	0.055	g²/Hz
750 - 2000	-3.43	dB/oct
2000	0.018	g²/Hz
Resonance Search		
5 - 2000	0.5	g

- Sine: 5 100Hz at 2 octaves / minute
- Random:
 - 10s at -9dB
 - 10s at -6dB
 - 10s at -3dB
 - 120s at 0dB (9.47g RMS)
- Resonance Search: 5 2000Hz at 2 octaves / minute
- Sequence:
 - Resonance Search
 - Sine
 - Resonance Search
 - Random
 - Resonance Search

Vibration – Accelerometers

- 3 triaxial measurement accelerometers
 - A1: GMOD Housing
 - A2: Top of motherboard
 - A3: Bottom of Motherboard

- 2 triaxial control accelerometers
 - Mounted to Subsystem Adapter Plate

Vibration – MGSE/Mounting

Mounting Exploded Diagram

GMOD Mounted on Z-Axis Armature

TVAC – Profiles and Durations

- Temperature: $-31^\circ +75^\circ$
- Pressure: 10E-6 mBar
- 1 Non-operational Cycle
- 3 Operational Cycles
- >1 hour dwell at hot and cold temperatures

- Hot temperature:
 - SiPM array at 55° while operational during Solstice.
 - $75^\circ = 55^\circ + 10^\circ$ modelling uncertainty + 10° qualification margin.
- Cold temperature:
 - MSP at -11° while non-operational during cold case.
 - -31° = -11° 10° modelling uncertainty -10° qualification margin.

TVAC – Thermocouple Placement

• 3x TCs on Motherboard

• 1x TC on Crystal

• 1x PT100 on Housing

nstallation 0 TVAC

Đ.

0

.

•

-

0

Ċ.

0

0

0

