Laser-plasma acceleration beyond wavebreaking

Bernardo Malaca¹,

Jorge Vieira¹, John Palastro²

bernardo.malaca@tecnico.ulisboa.pt

¹GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

² Laboratory for Laser Energetics, University of Rochester, Rochester, US

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

Laser Wakefield Acceleration (LWFA)

00

0

Acceleration Properties

- Gaussian intense laser pulse
- Semi-spherical plasma wave

Experimental results

- BELLA: 8 GeV in 20 cm of plasma
- 3 orders of magnitude above std. accelerators

Final properties of e-beam

- Efficiency: $\sim 1\%$
- Charge: 10s of pC
- Energy spread: ~10%

Can we get higher gradients, higher energies, higher efficiencies?

Dephasing is the main bottleneck

Beyond the limits of LWFA

Unique property of plasma : Flexibility

RF cavities

- Solid (Metal)
- Fixed plasma
 acceleration structure

Plasma

- Free particles
- Flexible plasma acceleration structure

Manipulating laser internal structure

Using a gaussian driver gives us **one** degree of freedom: the total laser energy

There are hidden degrees of freedom in the internal structure of the laser (the laser focal velocity can be modified)

How?

Experimentally controlling laser focal speed

Setup

(a) The laser pulse first reflects off of a stepped echelon, which imparts the temporal delay required for a predetermined focal velocity.

(c),(d) After reflecting from the echelon, the pulse encounters the axiparabola, which focuses different rings in the near field to different axial locations, stretching the region over which the pulse can sustain a high intensity from the initial focus

(e) The pulse drives a wakefield at the desired focal velocity

* |. Palastro et al, PRL 124 (2020)

Particle-In-Cell simulation with OSIRIS 4.0

IJÎ

Frank Tsung

osiris framework

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis Infrastructure
- Developed by the osiris.consortium \Rightarrow UCLA + IST

code features

- Scalability to \sim 1.6 M cores
- SIMD hardware optimized
- Parallel I/O
- Dynamic Load Balancing
- QED module
- Particle merging
- GPGPU & Xeon Phi support
- **Flying Focus Module**

TÉCNICO LISBOA UCLA **Ricardo Fonseca** ricardo.fonseca@tecnico.ulisboa.pt tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

Superluminal "laser" propagation in ID cold plasma

Theory

Below wave breaking thresholds (low intensity):

Plasma sustains similar electric fields for sub and superluminal pulses

Beyond wave breaking thresholds (high intensity):

Plasma sustains much higher electric fields for superluminal pulses

Maximum electric field

Simulation

Below wave breaking thresholds: $a_0=2$

Linear response of the system: there is no electron injection in the wave (the amplitude of the wave does not depend on the laser focal velocity)

* J. Palastro, B. Malaca, J.Vieira et al (submitted) (2020)

Beyond wave breaking thresholds: $a_0 = 15$

Non-Linear response of the system: there is immoderate electron injection in the subliminal wave (no electrons are injected in the superluminal wave - the amplitude is not affected during interaction)

* J. Palastro, B. Malaca, J.Vieira et al (submitted) (2020)

* J. Palastro, B. Malaca, J.Vieira et al (submitted) (2020)

10 Bernardo Malaca | Particle Physics for the Future of Europe | September 28, 2020

How about multidimensional simulations?

3D simulations with a0=15

In the superluminal regime no electrons are injected and therefore the electric field inside the bubble is smoother - possibly a good candidate for staged acceleration.

* B. Malaca et al (in preparation) (2020)

Conclusions

At low laser intensity

Results are independent from group velocity

Density, electric field and electronic phase space are independent from β

At high laser intensity

Results depend extensively on group velocity

For $\beta = 0.99$ the electric field after the first bucket approaches 0, while it keeps the shape on the superluminal counterpart*

Next steps

3D results are promising

We need to use self-consistent electromagnetic fields to verify the expected plasma response to the purposed experimental setup.

* J. Palastro, B. Malaca, J.Vieira et al (submitted) (2020)