Particle Physics for the Future of Europe

Flavour & Beyond Standard Model Physics

Nuno Leonardo, LIP, IST Gui N. Rebelo, CFTP, IST

Instituto Superior Técnico, 28 September 2020

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the "Standard Model."

FERMIONS

matter constituents spin = 1/2, 3/2, 5/2, ...

Leptons spin = 1/2				Quarks spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge
v_e electron neutrino	<1×10 ⁻⁸	0		U up	0.003	2/3
e electron	0.000511	-1		d down	0.006	-1/3
$ u_{\mu}^{\text{muon}}$ neutrino	<0.0002	0		C charm	1.3	2/3
$oldsymbol{\mu}$ muon	0.106	-1		S strange	0.1	-1/3
$ u_{ au}^{ ext{ tau }}_{ ext{ neutrino }}$	<0.02	0		t top	175	2/3
$oldsymbol{ au}$ tau	1.7771	-1		b bottom	4.3	-1/3

Spin is the intrinsic angular momentum of particles. Spin is given in units of \hbar , which is the quantum unit of angular momentum, where $h = h/2\pi = 6.58 \times 10^{-25}$ GeV s = 1.05x10⁻³⁴ J s.

Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10^{-19} coulombs.

The **energy** unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. **Masses** are given in GeV/c^2 (remember $E = mc^2$), where $1 \text{ GeV} = 10^9 \text{ eV} = 1.60 \times 10^{-10}$ joule. The mass of the proton is 0.938 GeV/c^2 $= 1.67 \times 10^{-27}$ kg.

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. There are about 120 types of baryons.								
Symbol	Name Quark Electric Mass content charge GeV/c ² Spin							
р	proton	uud	1	0.938	1/2			
p	anti- proton	ūūd	-1	0.938	1/2			
n	neutron	udd	0	0.940	1/2			
Λ	lambda	uds	0	1.116	1/2			
Ω-	omega	SSS	-1	1.672	3/2			

Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or - charge is shown). Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., Z^0 , γ , and $\eta_c = c\overline{c}$, but not $K^0 = d\bar{s}$) are their own antiparticles.

Figures

These diagrams are an artist's conception of physical processes. They are not exact and have no meaningful scale. Green shaded areas represent the cloud of gluons or the gluon field, and red lines the quark paths.

then the quarks and electrons would be less than 0.1 mm in size and the entire atom would be about 10 km across.

PROPERTIES OF THE INTERACTIONS

nnihilate to produce B⁰ and B⁰ mesons

via a virtual Z boson or a virtual photon

 $n \rightarrow p e^- \overline{\nu}_a$

A neutron decays to a proton, an electron.

W boson. This is neutron B decay.

and an antineutrino via a virtual (mediating)

Interaction	Gravitational	Weak	Electromagnetic	Str	ong
Toperty	Gravitational	(Electr	oweak)	Fundamental	Residual
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
trength relative to electromag 10^{-18} m	10 ⁻⁴¹	0.8	1	25	Not applicable
or two u quarks at: 3×10 ⁻¹⁷ m	10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks
or two protons in nucleus	10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

				to nations
e+	e⁻ → B ⁰ Ē ⁰	B ⁰	p p → Z ⁰	⁰ Z ⁰ + assorted hadron
e	+ γ auon	d		hadrons Z0 hadrons hadrons
e	or Jedo	d.	U U	hadrons Z ⁰
An e anti	lectron and positron		Two protons collic produce various h particles such as Z	ding at high energy can nadrons plus very high mass 2 bosons. Events such as this

v can high mass particles such as Z bosons. Events such as this one are rare but can yield vital clues to the structure of matter

BOSONS

Unified Electroweak spin = 1						
Name	Mass GeV/c ²	Electric charge				
γ photon	0	0				
W-	80.4	-1				
W+	80.4	+1				
Z ⁰	91.187	0				

force carriers spin = 0, 1, 2, ...

Strong	Strong (color) spin = 1						
Name	Mass GeV/c ²	Electric charge					
g gluon	0	0					

Color Charge

Each quark carries one of three types of "strong charge," also called "color charge." These charges have nothing to do with the colors of visible light. There are eight possible types of color charge for gluons. Just as electri-

cally-charged particles interact by exchanging photons, in strong interactions color-charged particles interact by exchanging gluons. Leptons, photons, and **W** and **Z** bosons have no strong interactions and hence no color charge.

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called hadrons. This confinement (binding) results from multiple exchanges of gluons among the color-charged constituents. As color-charged particles (guarks and gluons) move apart, the energy in the color-force field between them increases. This energy eventually is converted into additional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in nature: mesons $q\bar{q}$ and baryons qqq.

Residual Strong Interaction

The strong binding of color-neutral protons and neutrons to form nuclei is due to residual strong interactions between their color-charged constituents. It is similar to the residual electrical interaction that binds electrically neutral atoms to form molecules. It can also be viewed as the exchange of mesons between the hadrons.

,	Mesons qq Mesons are bosonic hadrons. There are about 140 types of mesons.							
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin			
π^+	pion	ud	+1	0.140	0			
K⁻	kaon	sū	-1	0.494	0			
$ ho^+$	rho	ud	+1	0.770	1			
В ⁰	B-zero	db	0	5.279	0			
η_{c}	eta-c	٢C	0	2 .980	0			

The Particle Adventure

hadrons

Visit the award-winning web feature The Particle Adventure at http://ParticleAdventure.org

This chart has been made possible by the generous support of: U.S. Department of Energy

U.S. National Science Foundation Lawrence Berkeley National Laboratory Stanford Linear Accelerator Center American Physical Society, Division of Particles and Fields

©2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-tion of teachers, physicists, and educators. Send mail to: CPEP, MS 50-308, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text materials, hands-on classroom activities, and workshops, see:

http://CPEPweb.org

INDUSTRIES, INC.

Flavour Sector

Flavour Sector

Strong and Electroweak Sector

Higgs Sector

Quarks are not free in nature, they have fractional charges and always appear in bound states of integer charge (or zero charge) which are singlets of an SU(3) symmetry:

Mesons: combinations of one quark and one-anti-quark. For example:

pions: u, d quark and anti-quark

kaons: s (anti)-quark with u or d quark or anti-quark

D mesons: c (anti)-quark with u, d or s quark or anti-quark

B mesons: b (anti)-quark with u, d, s, c quark or anti-quark

t quarks do not hadronise

Baryons: combinations of three quarks or three anti-quarks

e.g., proton: uud; neutron: udd

Exotics (not yet established): e.g. Pentaquarks

The Standard Model Vertices

Q means charged, f means fermion, / means lepton, q means quark.

No FCNC in the SM!

muon decay: $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e$

Pion decay

Symmetries play a fundamental role in Particle Physics

The structure of the vertices presented in the previous slide is fixed by symmetries

Still: "There is a striking difference between the simplicity of the gauge sector, described by just three gauge couplings, and the complicated structure of the rest of the SM with over twenty **Higgs related parameters describing the SM flavour structure**. This suggests that **flavour physics is a unique portal** to a more fundamental organizing principle. "

Physics Briefing Book

Input for the European Strategy for Particle Physics Update 2020 arXiv:1910.11775

Some of the properties of the SM

- no photon mediated FCNC
- no Z mediated FCNC (which are possible in physics BSM)
- only one **Higgs** field (electrically neutral) (multi-Higgs may appear in physics BSM)
- no Higgs mediated FCNC (these are possible in physics BSM)
- VCKM (governs couplings of quarks to W) is a unitary matrix

(VCKM has "small" off-diagonal entries and has complex entries with physical meaning)

- CP violation in the quark sector
- neutrinos are strictly massless
- no leptonic mixing, i.e., the couplings of leptons to W are real diagonal, i.e. identity

VCKM plays a fundamental role in Flavour

$$\frac{-g}{\sqrt{2}}(\overline{u_L}, \overline{c_L}, \overline{t_L})\gamma^{\mu} W^{+}_{\mu} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.} \qquad V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

most commonly used unitarity triangle

 $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

Why Physics Beyond the SM?

- The SM leaves many unanswered questions and cannot accommodate all data!
 - in the SM neutrinos are strictly massless
 - what is the nature of Dark Matter? No viable DM candidates in the SM
 - SM cannot account for the baryon asymmetry of the Universe
- Furthermore, there is the:
 - Electroweak hierarchy problem. Why is the Higgs so light?
 - Strong CP problem
 - Flavour puzzle: Origin of fermion masses, mixing and CP violation (Neutrino Physics is Physics Beyond the SM)

PERSPECTIVES ON FLAVOUR & BSM

Searching for BSM

Direct

 searching for the decay products of NP particles produced in collision

Indirect

 searching for effects of NP particles running in quantum loops (virtual)

Direct searches: heavy NP particles

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

 $\sqrt{s} = 8, 13 \text{ TeV}$

Status: May 2020

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

	Model	ℓ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[ft	⁻¹] Limit	U		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow WV \rightarrow \ell \gamma qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ \hline 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $2j/1J$ $\geq 1 b, \geq 1J/$ $\geq 2 b, \geq 3$	Yes - - - - Yes 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	М _D M _S M _{th} M _{th} M _{th} G _{KK} mass G _{KK} mass G _{KK} mass KK mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	$ \begin{array}{l} n=2\\ n=3 \ \text{HLZ NLO}\\ n=6\\ n=6, M_D=3 \ \text{TeV, rot BH}\\ n=6, M_D=3 \ \text{TeV, rot BH}\\ k/\overline{M}_{Pl}=0.1\\ k/\overline{M}_{Pl}=1.0\\ k/\overline{M}_{Pl}=1.0\\ \Gamma/m=15\%\\ \text{Tier (1,1), } \mathcal{B}(\mathcal{A}^{(1,1)}\rightarrow tt)=1 \end{array} $	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{SSM}\; W' \to \tau\nu \\ \mathrm{HVT}\; W' \to WZ \to \ell\nu qq \mbox{ model } I \\ \mathrm{HVT}\; V' \to WV \to qqqq \mbox{ model } B \\ \mathrm{HVT}\; V' \to WH/ZH \mbox{ model } B \\ \mathrm{HVT}\; W' \to WH \mbox{ model } B \\ \mathrm{LRSM}\; W_R \to tb \\ \mathrm{LRSM}\; W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ B \ 1 \ e, \mu \\ B \ 0 \ e, \mu \\ multi-channe \\ 0 \ e, \mu \\ multi-channe \\ 2 \mu \end{array}$	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 \\ - \\ 2 j / 1 J \\ 2 J \\ \cdot \\ \geq 1 b, \geq 2 \\ \cdot \\ 1 J \end{array}$	_ J Yes Yes Yes J J	139 36.1 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass V' mass V' mass V' mass Wg mass Wg mass	5.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 6.0 TeV 3.7 TeV 4.3 TeV 3.8 TeV 2.93 TeV 3.2 TeV 3.25 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 1801.06992 2004.14636 1906.08589 1712.06518 CERN-EP-2020-073 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 139 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 CERN-EP-2020-066 1811.02305
MD	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e, μ 0 M) 0 e, μ 0 e, μ) 0-1 e, μ	$\begin{array}{c} 1-4j\\ 1-4j\\ 1J,\leq 1j\\ 1b,0\text{-}1J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M, 700 Ge m _{\$\phi}	1.55 TeV 1.67 TeV V 3.4 TeV	$\begin{array}{l} g_q{=}0.25, \ g_{\chi}{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
ГŐ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass 9	1.4 TeV 1.56 TeV 1.03 TeV 70 GeV	$\begin{split} \beta &= 1\\ \beta &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ BT \rightarrow T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ \ T \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe $2(SS)/\ge 3 e, \mu$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	$ \begin{array}{l} \\ \\ \alpha \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 1 \\ \geq 1 \ b, \geq 1 \\ \geq 4 \ j \end{array} $	Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass 690 Ge	1.37 TeV 1.34 TeV 1.64 TeV 1.85 TeV 1.21 TeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j -	- - - -	139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass l* mass v* mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$\begin{array}{c} 1 e, \mu \\ 2 \mu \\ 2,3,4 e, \mu (SS \\ 3 e, \mu, \tau \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\geq 2j$ $2j$ $=$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	Yes 3 TeV	79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass 560 GeV N _R mass 870 H ^{±±} mass 400 GeV multi-charged particle mass monopole mass 10 ⁻¹ 10 ⁻¹	3.2 TeV 9 GeV 1.22 TeV 2.37 TeV 1 1 1	$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell\tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
*On †Sn	ly a selection of the available nall-radius (large-radius) jets	e mass limi are denote	tull d ts on nev ed by the	ata v states letter j	s or phei (J).	iomena is shown.		Mass scale [TeV]	

The LHC has granted us access to the TeV scale. Current upper limits on NP mass scale: 1-10TeV

beyond SM beyond LHC

@HL-LHC

extend sensitivity by x2

- innovative analysis methods
- explore tails of distributions

@FC further large gains in sensitivity

All Colliders: squark projections

(R-parity conserving SUSY, prompt searches)

Feebly Interacting Particles

Indirect searches: fuelled by Quantum Mechanics

Heavy flavour

CKM ⇒ ultra precision tests of SM flavour structure (–Higgs)

Perspectives on Flavour & BSM

rare decay: $b \rightarrow s \mu \mu$

$b \rightarrow s \mu \mu I$ global fits

Flavour Anomalies

Clarification being actively pursued experimentally by LHCb,ATLAS,CMS, and Bellell + theory calculations and model building

21

21

Light flavour sector

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

top & Higgs FCNC

Summary

- BSM physics is actively searched at LHC & beyond
 - Direct searches: novel trigger/analysis strategies, unconventional signatures
 - Precision measurements: flavour mixing & CPV, particle properties/couplings
 - Indirect searches: rare and forbidden decays, FCNC, LFV, LFUV
- Flavour provides sensitivity to BSM well beyond collision energy
 - light quarks heavy quarks leptons
- Perspectives are bright
 - HL-LHC and other mid-term new projects (@CERN and elsewhere) shall facilitate large increases in sensitivity to New Physics
 - Also through exploration of new ideas and novel approaches
 - Europe, and Portugal, well positioned to (continue to) play leading role

Work Partially supported by:

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

European Union

