

Neutrinos: a window into the future

Filipe Joaquim (CFTP, IST) José Maneira (LIP)

Particle Physics for the Future of Europe (28 Sept. 2020, IST)

The only SM I know of...

THE SM IS A REMARKABLE THEORY BUT...

How do we know the SM is incomplete?

Experimental observation!

(although from the theory point of view some aspects of the SM are "not elegant")

NEUTRINO MASSES AND MIXING

DARK MATTER

CORONA VIRUS

6.1 Introduction

The discovery of neutrino oscillation proves that neutrinos have non-zero masses. This is one of the few solid experimental proofs of physics beyond the Standard Model, as new interactions or new elementary particle states are needed to introduce this mass term in the Lagrangian.

Big questions

Although this is introductory QM...

It opens a window (or actually the front door) to physics beyond the SM

What do we know?

	NO or IO?								
	↓ ↓								
	Normal Ord	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 7.1)$						
	btp $\pm 1\sigma$	3σ range	btp $\pm 1\sigma$	3σ range					
$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$					
$\theta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$					
$\sin^2 \theta_{23}$	$0.573^{+0.016}_{-0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$					
$ heta_{23}/^\circ$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3_{-1.1}^{+0.9}$	$40.3 \rightarrow 51.8$					
$\sin^2 \theta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$					
$ heta_{13}/^{\circ}$	$8.57^{\pm 0.12}_{-0.12}$	$8.20 \rightarrow 8.93$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.96$					
$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$					
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$					
 $\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498\substack{+0.028\\-0.028}$	$-2.581 \rightarrow -2.414$					

6.1.1 The big questions related to the neutrino masses

Thanks to the recent discoveries in the sector of neutrino oscillations we have now a clear zeroth-order picture of neutrino properties, which however, raises a number of theoretical and phenomenological questions: Why are neutrino masses many orders of magnitude smaller than any other fermion mass in the Standard Model? Are neutrinos their own antiparticles? What are the actual values of neutrino masses (absolute mass scale and mass ordering)? Is the CP symmetry violated in lepton mixing? What are the precise values of the mixing angles and why is lepton mixing so much different than quark mixing? Are there observable deviations from the standard three-neutrino picture (e.g., non-standard interactions or non-unitarity of the mixing matrix)? Answering these questions is the main focus of the present and future neutrino experimental program. It is of paramount importance as it offers a unique window on the physics

Valle et al.; Gonzalez-Garcia et al; Lisi et al.

Remarkable achievements

Remarkable measurement of neutrino oscillation parameters

Neutrinos & the ESPP

5 5

5

5.

5

6

7

7 7

7

CERN-ESU-004 1 October 2019

Physics Briefing Book

Input for the European Strategy for Particle Physics Update 2020

Electroweak Physics: Richard Keith Ellis¹, Beate Heinemann^{2,3} (Conveners) Jorge de Blas^{4,5}, Maria Cepeda⁶, Christophe Grojean^{2,7}, Fabio Maltoni^{8,9}, Aleandro Nisati¹⁰. Elisabeth Petit¹¹, Riccardo Rattazzi¹², Wouter Verkerke¹³ (Contributors)

Strong Interactions: Jorgen D'Hondt¹⁴, Krzysztof Redlich¹⁵ (Conveners) Anton Andronic¹⁶, Ferenc Siklér¹⁷ (Scientific Secretaries) Nestor Armesto¹⁸, Daniël Boer¹⁹, David d'Enterria²⁰, Tetyana Galatyuk²¹, Thomas Gehrmann²², Klaus Kirch²³, Uta Klein²⁴, Jean-Philippe Lansberg²⁵, Gavin P. Salam²⁶, Gunar Schnell²⁷, Johanna Stachel²⁸, Tanguy Pierog²⁹, Hartmut Wittig³⁰, Urs Wiedemann²⁰(Contributors)

Flavour Physics: Belen Gavela³¹, Antonio Zoccoli³² (Conveners) Sandra Malvezzi³³, Ana M. Teixeira³⁴, Jure Zupan³⁵ (*Scientific Secretaries*) Daniel Aloni³⁶, Augusto Ceccucci²⁰, Avital Dery³⁶, Michael Dine³⁷, Svetlana Fajfer³⁸, Stefania Gori³⁷, Gudrun Hiller³⁹, Gino Isidori²², Yoshikata Kuno⁴⁰, Alberto Lusiani⁴¹, Yosef Nir³⁶, Marie-Helene Schune⁴², Marco Sozzi⁴³, Stephan Paul⁴⁴, Carlos Pena³¹ (*Contributors*)

Neutrino Physics & Cosmic Messengers: Stan Bentvelsen⁴⁵, Marco Zito^{46,47} (Conveners) Albert De Roeck²⁰, Thomas Schwetz²⁹ (*Scientific Secretaries*) Bonnie Fleming⁴⁸, Francis Hatzen⁴⁹, Andreas Haungs²⁹, Marek Kowalski², Susanne Mertens⁴⁴, Mauro Mezzetto⁵, Silvia Pascoli⁵⁰, Bangalore Sathyaprakash⁵¹, Nicola Serra²² (*Contributors*)

Beyond the Standard Model: Gian F. Giudice²⁰, Paris Sphicas^{20,52} (Conveners) Juan Alcaraz Maestre⁶, Caterina Doglioni⁵³, Gaia Lanfranchi^{20,54}, Monica D'Onofrio²⁴ Matthew McCullough²⁰, Gilad Perez²⁰, Philipp Roloff²⁰, Veronica Sanz²⁵, Andreas Weiler⁴⁴, Andrea Wulzer^{4,12,20} (*Contributors*)

Dark Matter and Dark Sector: Shoji Asai⁵⁶, Marcela Carena⁵⁷ (Conveners) Babette Döbrich²⁰, Caterina Doglioni⁵³, Joerg Jaeckel²⁸, Gordan Krnjaic⁵⁷, Jocelyn Monroe⁵⁸, Konstantinos Petridis⁵⁹, Christoph Weniger⁶⁰ (Scientific Secretaries/Contributors)

Accelerator Science and Technology: Caterina Biscari⁶¹, Leonid Rivkin⁶² (Conveners) Philip Burrows²⁶, Frank Zimmermann²⁰ (Scientific Secretaries) Michael Benedikt²⁰, Pierluigi Campana⁵⁴, Edda Gschwendtner²⁰, Erk Jensen²⁰, Mike Lamont²⁰, Wim Leemans², Lucio Rossi²⁰, Daniel Schulte²⁰, Mike Seidel⁶², Vladimir Shiltsev⁶³, Steinar Stapnes²⁰, Akira Yamamoto^{20,64} (Contributors)

Instrumentation and Computing: Xinchou Lou⁶⁵, Brigitte Vachon⁶⁶ (Conveners) Roger Jones⁶⁷, Emilia Leogrande²⁰ (Scientific Secretaries) Ian Bird²⁰, Simone Campana²⁰, Ariella Cattai²⁰, Didier Contardo⁶⁸, Cinzia Da Via⁶⁹, Francesco Forti⁷⁰, Maria Girone²⁰, Matthias Kasemann², Lucie Linssen²⁰, Felix Sefkow², Graeme Stewart²⁰(Contributors)

Editors: Halina Abramowicz⁷¹, Roger Forty²⁰, and the Conveners

i

5	Flavour Physics 65	
5.1	Introduction/Theory of Flavour	
5.2	Light sector: spectrum below GeV (short-, mid- and long-term)	
5.3	Heavy sector (short-, mid- and long-term)	
5.4	Flavour and dark sectors (short-, mid- and long-term)	
5.5	The CKM matrix elements: prospects	
5.6	Conclusions	
6	Neutrino Physics 90	
61	Introduction 90	
6.2	Present knowledge of neutrino mixing narameters 91	
6.3	Measurements of neutrino oscillation parameters 92	
64	Determination of neutrino mass and nature 100	
6.5	Search for new neutrino states 100	
6.6	Conclusions	
_		
7	Cosmic Messengers 105	
7.1	Ultra-High Energy charged particles	
7.2	High-Energy gamma rays	
7.3	Ultra High Energy neutrinos	
7.4	Gravitational waves	
7.5	Multimessenger astroparticle physics	
7.6	Synergies with HEP	
8	Beyond the Standard Model 113	
8.1	Introduction	
8.2	Electroweak symmetry breaking and new resonances	
8.3	Supersymmetry	
8.4	Extended Higgs sectors and high-energy flavour dynamics	
8.5	Dark Matter	
8.6	Feebly-interacting particles	
8.7	Summary and conclusions	
9	Dark Matter and Dark Sectors 142	
9.1	Introduction	
9.2	Astrophysical Probes of Dark Matter	
9.3	Dark matter and Dark sectors at Colliders	
9.4	DM and DS at beam-dump and fixed-target experiments	
9.5	Axions and ALPs	
9.6	Conclusions	

6.1 Introduction

The discovery of neutrino oscillation proves that neutrinos have non-zero masses. This is one of the few solid experimental proofs of physics beyond the Standard Model, as new interactions or new elementary particle states are needed to introduce this mass term in the Lagrangian.

Moreover, the extremely low mass of the neutrinos, well below the eV scale, sets them far apart from the other fermions. This extraordinary lightness might be related to new physics at a very high scale, as proposed by the see-saw models. There is the tantalizing possibility suggested by the leptogenesis hypothesis that the phenomena at these high scales could explain the baryon asymmetry in the Universe. Moreover neutrinos could be a completely new kind of particle, a Majorana fermion, identical to its antiparticle. If this is realised in nature, new processes violating the conservation of the lepton number are possible. For all these reasons, neutrinos are therefore widely considered as a unique window to BSM physics.

These considerations have triggered a very vibrant experimental program world-wide that has made rapid progress in the last years. With the discovery of the third mixing angle θ_{13} the three neutrino mixing framework has been established.

A new exciting phase of experiments and discoveries opens up, that will be covered in this chapter. Moreover, as neutrinos are also a special probe of dense astrophysical systems, there is a strong synergy at many levels with astroparticle physics that will be covered in Chapter 7.

Physics briefing book, Input for the European Strategy for Particle Physics Update

Dirac or Majorana?

DIRAC

 $Y_{ij}L\nu_R\Phi$

- L is conserved
- Tiny couplings required y~10⁻¹¹ for eV neutrinos

MAJORANA

 $\frac{\kappa_{ij}}{\Lambda}L_iL_j\Phi\Phi$

- L is broken
- Naturally small v masses
- Nice effective description
- Simple realizations

NEUTRINOLESS DOUBLE BETA DECAY

FIG. 2. Diagram showing how any neutrinoless double- β decay process induces a $\bar{\nu}_e$ -to- ν_e transition, that is, an effective Majorana mass term.

Schechter & Valle' 82

BSM Neutrino mass models

Complementary neutrino studies

Neutrino masses by themselves do not provide guidance towards the energy scale of new physics responsible for generating them. There is a vast range for the scale of new physics extending from sub-eV up to the GUT scale of 10^{16} GeV. In order to make progress in view of this multitude of possibilities a wide range of complementary observables needs to be explored. These include (i) the search for sterile neutrinos at various different mass scales including oscillations at the eV scale and heavy neutral leptons at collider and beam dump experiments, (ii) lepton number violation in neutrinoless double-beta decay or at high-energy colliders, (iii) charged lepton-flavour violation, (iv) precision measurements in the neutrino sector, and (v) search for non-standard neutrino properties such as exotic interactions or non-unitarity of the 3×3 mixing matrix.

Complementary neutrino studies

Neutrino masses by themselves do not provide guidance towards the energy scale of new physics responsible for generating them. There is a vast range for the scale of new physics extending from sub-eV up to the GUT scale of 10^{16} GeV. In order to make progress in view of this multitude of possibilities a wide range of complementary observables needs to be explored. These include (i) the search for sterile neutrinos at various different mass scales including oscillations at the eV scale and heavy neutral leptons at collider and beam dump experiments, (ii) lepton number violation in neutrinoless double-beta decay or at high-energy colliders, (iii) charged lepton-flavour violation, (iv) precision measurements in the neutrino sector, and (v) search for non-standard neutrino properties such as exotic interactions or non-unitarity of the 3×3 mixing matrix.

D. Barreiros, FRJ & T. T. Yanagida, PRD'20

H. ComBarer, efr. Cos., Relip & & Kip & & Kip & M. ComBarer, efr. Cos., Relip & & Kip & & Kip &

Complementary neutrino studies

Neutrino masses by themselves do not provide guidance towards the energy scale of new physics responsible for generating them. There is a vast range for the scale of new physics extending from sub-eV up to the GUT scale of 10^{16} GeV. In order to make progress in view of this multitude of possibilities a wide range of complementary observables needs to be explored. These include (i) the search for sterile neutrinos at various different mass scales including oscillations at the eV scale and heavy neutral leptons at collider and beam dump experiments, (ii) lepton number violation in neutrinoless double-beta decay or at high-energy colliders, (iii) charged lepton-flavour violation, (iv) precision measurements in the neutrino sector, and (v) search for non-standard neutrino properties such as exotic interactions or non-unitarity of the 3×3 mixing

matrix.

Physics briefing book, Input for the European Strategy for Particle Physics Update

	90% C.L. range	origin	Ref.		-		
	NSI v	vith quarks				-	
$\epsilon_{e\mu}^{qL}$	[-0.023, 0.023]	accelerator	112, 165		10^{-1}		
$\epsilon^{qR}_{e\mu}$	[-0.036, 0.036]	accelerator	112, 165				
$\epsilon_{e\mu}^{uV}$	[-0.073, 0.044]	oscillation data $+$ COHERENT	127		0	-	and the second
$\epsilon_{e\mu}^{dV}$	[-0.07, 0.04]	oscillation data $+$ COHERENT	127		10^{-2}		
$\epsilon_{e\tau}^{qL}, \epsilon_{e\tau}^{qR}$	[-0.5, 0.5]	CHARM	[128]			Contraction of the second second	
$\epsilon_{e\tau}^{uV}$	[-0.15, 0.13]	oscillation data $+$ COHERENT	127		9		
$\epsilon_{e\tau}^{dV}$	[-0.13, 0.12]	oscillation data $+$ COHERENT	[127]	$\mu^{(4)}$	10^{-3}	the state of the second	The second states
$\epsilon^{qL}_{\mu\tau}$	[-0.023, 0.023]	accelerator	165	50			
$\epsilon^{qR}_{\mu\tau}$	[-0.036, 0.036]	accelerator	165	n^2	4	The provide the state of the st	
$\epsilon^{qV}_{\mu\tau}$	[-0.006, 0.0054]	IceCube	143	S1.	10^{-4}	E. S. M. P. C. P. T. SAX	
$\epsilon^{qA}_{\mu\tau}$	$\left[-0.039, 0.039 ight]$	atmospheric + accelerator	[165]				
	NSI w	ith electrons			10^{-5}		
$\epsilon^{eL}_{e\mu}, \epsilon^{eR}_{e\mu}$	[-0.13, 0.13]	reactor + accelerator	162		10	$M_2 \simeq M_3$	and the second second
$\epsilon_{e\tau}^{eL}$	[-0.33, 0.33]	reactor + accelerator	162		_		
$\epsilon^{eR}_{e\tau}$	[-0.28, -0.05] & [0.05, 0.28] [-0.19, 0.19]	reactor + accelerator TEXONO	$\frac{162}{163}$		10^{-6}	• 60 • 14υ	• •
$\epsilon^{eL}_{\mu\tau}, \epsilon^{eR}_{\mu\tau}$	[-0.10, 0.10]	reactor + accelerator	128, 162			E > 20v • •	• • •
$\epsilon^{eV}_{\mu\tau}$	[-0.018, 0.016]	IceCube	$[143]^{a}$		10^{-7}		•• • •• • • • • •
^a Bound	d adapted from $\epsilon^{qV}_{\mu\tau}$.				10	$^{-4}$ 10 ⁻³	1
	TABLE III. Bounds on F	lavor changing NC NSI couplings					m_{\min} (eV)
	Farzan 8	& Tortola'18					Branco et al.'20

F. Joaquim, J. Maneira

Particle Physics for the Future of Europe (28 Sept. 2020, IST)

- The role of symmetries (predictions for neutrino oscillations, neutrinoless double beta decays,...)
- > Non-unitarity effects in the neutrino sector
- > Neutrinos and LFV (SUSY, seesaw frameworks, ...)
- Sterile neutrinos and oscillations
- > Neutrino physics at **colliders** (LR models, seesaw messengers,...)
- The role of neutrinos in the early Universe (leptogenesis, connection highlow energy CPV)
- Neutrinos and Dark Matter in the context of neutrino mass generation mechanisms – multi-Higgs models

The physics involved in neutrino mass generation explores synergies among the three frontiers of particle physics:

Open questions and the road to get there

- Nuclear decays
- Astronomical objects

Our tools: Detectors

- Dedicated small detectors
- Mid-range liquid scintillator detectors (~ kton scale)
- Massive H₂O or LAr detectors (> 40 kton)

1 – What is the absolute neutrino mass?

Tritium beta decay endpoint

- KATRIN first results: $m_{\beta} < 1.1 \text{ eV}$ (90% CL)
- Sensitivity goal (5yr): $\dot{m_{\beta}} < 0.2 \text{ eV}$ (90% CL)
- New ideas: Cyclotron radiation emission spectroscopy. Project 8 sensitivity: 40 meV

Cosmology

- Current bound: Σm < 0.12 eV
- Future prospects: : $\Sigma m < 20 \text{ meV}$
- Far future: direct detection of CvB ??

2 – Is the neutrino Dirac or Majorana ?

3 - Complete the 3-flavor mixing matrix

$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}), \, \alpha, \beta = e, \mu, \tau, \, \alpha \neq \beta$$

lf δ_{CP} **≠ 0,** π

 Oscillations for neutrinos and antineutrinos are different

How to measure ?

- Make beams of muon nu and anti-nu
- Make detector 1300 km away
- Observe appearance of nu and anti-nu

Sterile neutrinos

- Anomalies in electron neutrino appearance (LSND and MiniBooNE) and disappearance (reactor, Ga solar) results can be explained by oscillations with a fourth "sterile" state with ~eV mass difference
- But other muon neutrino disappearance results are strongly incompatible
- Unclear picture -> many new experiments looking for this

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c\Theta_{23} & s\Theta_{23} \\ 0 & -s\Theta_{23} & c\Theta_{23} \end{pmatrix} \begin{pmatrix} c\Theta_{13} & 0 & s\Theta_{13} \cdot e^{-i\delta} \\ 0 & 1 & 0 \\ -s\Theta_{13} \cdot e^{-i\delta} & 0 & c\Theta_{13} \end{pmatrix} \begin{pmatrix} c\Theta_{12} & s\Theta_{12} & 0 \\ -s\Theta_{12} & c\Theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha/2} & 0 \\ 0 & 0 & e^{-i\beta/2} \end{pmatrix}$$

$$\begin{array}{c} 99.73\% \text{ CL} \\ 2 \text{ dof} \\ 10^{1} \\ & &$$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

Non-unitarity

- Above parametrization assumes 3x3 PMNS matrix is unitary
- What if PMNS is a subset of a larger dimension matrix ?
- Searching for non-unitarity in the neutrino mixing matrix is searching for new physics at a higher energy scale
 - Need to measure Uαi elements independently
 - High precision is needed: measure oscillation with O(1%) uncertainties. DUNE and HK needed.

5 – Neutrino spectroscopy

Neutrinos from Stars and the Earth

- Solar neutrinos gave the first hints of oscillations. All fluxes measured now and constraining solar models.
- Geo-neutrinos observed in Italy and Japan, prove that a large fraction of Earth's heat is radiogenic
- Observation of Supernova Bursts with modern detectors would provide a wealth of data on neutrinos and SN

Neutrino Astronomy

- IceCube detector in Antartica observed highenergy (PeV) astronomical neutrinos
- Some correlated with gamma, X-ray, telescope observations *multi-messengers*
- New observatories in the Mediterranean and lake Baikal

2.1 – SNO+

- Re-furbishing the SNO solar neutrino detector
- New purification, hold-down ropes, calibration systems, trigger and DAQ
 - Repairs in cavity, PMTs, electronics
- Currently half-filled with liquid scintillator. Te to be loaded early 2021. Sensitivity 2x10²⁶ yr
- Loading DBD isotope in LS allows very large masses: 0.5% Te-loading now, can increase to 2.5%
- Very promising technique for future experiments aiming smaller nu masses: Theia? JUNO ?

2.2 – Portugal in SNO+

Absorption Length

- LIP a founding member of SNO+
 - Signed the 2004 LOI, participated in first meeting, hosted 2010 meeting
- Detector calibrations
 - Hardware: optical fiber array for PMT calibration, internal deployment mechanism
 - Analysis of optical and neutron sources
- Data analysis and Physics
 - Anti-neutrinos from reactors (oscillations) and the Earth (Geophysics)
 - Measure the radioactivity backgrounds, crucial for all analyses

Radon decreasing in LS run

F. Joaquim, J. Maneira

3.1 - DUNE

• Neutrino oscillation experiment with most intense beam from Fermilab

- Deep underground location allows rich program of non-beam Physics
 - Complementary to HK in Japan.
 - Higher energy, wide-band beam
 - LAr TPC technology instead of water Cherenkov

One (of 4) 17 kton far detector module

Beam event display from ProtoDUNE

@CERN

F. Joaquim, J. Maneira

DUNE and the European Strategy

1

Major developments from the 2013 Strategy

B. The existence of non-zero neutrino masses is a compelling sign of new physics. The worldwide neutrino physics programme explores the full scope of the rich neutrino sector and commands strong support in Europe. Within that programme, the Neutrino Platform was established by CERN in response to the recommendation in the 2013 Strategy and has successfully acted as a hub for European neutrino research at accelerator-based projects outside Europe. *Europe, and CERN through the Neutrino Platform, should continue to support long baseline experiments in Japan and the United States. In particular, they should continue to collaborate with the United States and other international partners towards the successful implementation of the Long-Baseline Neutrino Facility (LBNF) and the Deep Underground Neutrino <i>Experiment (DUNE).*

3.2 – Portugal in DUNE

CERN Neutrino Platform

t televille 1

ProtoDUNE

Dual Phase

- Two 1 kton prototypes built and exposed to test beam at the Neutrino Platform
- ProtoDUNEs -I stopped operations this summer, PD-II will follow in 2022
- Great opportunity to strengthen CERN connection
- We contributed to trigger of PD-SP-I and purity monitor analysis of PD-DP-I
- We are developing the calibration systems that will be tested at ProtoDUNE-II soon, strong collaboration with Los Alamos

Neutron transmission experiment @ Los Alamos

Calibration port

Outlook

- Double beta decay discovery ?
 - If Normal Ordering, will need a new generation of experiments
 - Will need a check with different isotopes/techniques (Theia, JUNO?)
 - Opens a rich phenomenology to be searched for at future colliders too
- Neutrino oscillations after CPV
 - Next would be search for nonunitarity and new-new Physics
- Interesting Technology to explore
 - Better light detectors for LS/water experiments. Ex.: LAPPDs: "flat wall" of very fast PMTs
 - Pixel readout for LAr TPCs
 - Machine Learning in event reconstruction and analysis
 - Open to surprises!

Underlying mechanism of DBD ?

Same-sign leptons at hadron colliders

Convolutional Neural Networks at DUNE

Thank you for your attention!