Fixed target & <u>Heavy-lons</u>

Particle Physics for the Future of Europe

Liliana Apolinário **TÉCNICO** LISBOA II

Monday, Sep 28th, IST

SM & QCD

Standard Model of Elementary Particles

L. Apolinário

QCD Phenomenology

Form Factors, PDFs, Hadronisation models,....

_	-	٦.
-		

SM & QCD

Standard Model of Elementary Particles

Fundamental objects of investigation

Input to predictions

46.00	
	'r
	10.1
	ALL
	1
	14P - 1
	× 1
	1 1
	1.1
	1 1
	5886
	- ARV
	MIL
	- MT/
	- MAA
	100
	- IN I
	111
	2.84
	15 1
	196
	- 110
	156
	1411

QCD program at future pp, ep DIS, e⁺e⁻ would be highly beneficial

Precision era of Electroweak and Higgs physics demand a new level of QCD understanding

46.00	
	'r
	10.1
	ALL
	1
	14P - 1
	× 1
	1 1
	1.1
	1 1
	5886
	- ARV
	MIL
	- MT/
	- MAA
	100
	- IN I
	111
	2.84
	15 1
	196
	- 110
	156
	1411

L. Apolinário

QCD High-temperature can be experimentally accessed in the lab:

Quark-Gluon Plasma

L. Apolinário

QCD High-temperature can be experimentally accessed in the lab:

Quark-Gluon Plasma

Nuclear beams physics program:

Emergence of high collectivity phenomena from microscopic laws of QCD

QGP @	Soft Sector	Hard sector
AA		

L. Apolinário

QCD High-temperature can be experimentally accessed in the lab:

Quark-Gluon Plasma

Nuclear beams physics program:

Emergence of high collectivity phenomena from microscopic laws of QCD

QGP @	Soft Sector	Hard sector
AA		

70

80

QCD High-temperature can be experimentally accessed in the lab:

Quark-Gluon Plasma

Nuclear beams physics program:

Emergence of high collectivity phenomena from microscopic laws of QCD

QGP @	Soft Sector	Hard sector
AA	\checkmark	\checkmark

QCD High-temperature can be experimentally accessed in the lab:

Quark-Gluon Plasma

Nuclear beams physics program:

Emergence of high collectivity phenomena from microscopic laws of QCD

QGP @	Soft Sector	Hard sector
AA	\checkmark	\checkmark
pA and pp	\checkmark	

With

QCD High-temperature can be experimentally accessed in the lab:

Quark-Gluon Plasma

Nuclear beams physics program:

Emergence of high collectivity phenomena from microscopic laws of QCD

QGP @	Soft Sector	Hard sector	
AA	\checkmark	\checkmark	
pA and pp	\checkmark	??	With

Future experimentation with nuclear beams:

Experimentally test how equilibrium properties arise in a non-Abelian QFT

Opportunities and Challenges @ LHC

	Year	Systems, time, L _{int}	Total per Run (3 and 4)	
R U	2021 (4 weeks)	Pb-Pb 5.5 TeV, 3 weeks pp 5.5 TeV, 1 week	Pb-Pb: 6.2/nb ALICE/ATLAS/CMS, 1/nb LHCb p-Pb: 0.6/pb ATLAS/CMS, 0.3/pb ALICE/LHCb	
N 3	2022 (6 weeks)	p-O + O-O 7 TeV, 1 week (after EYETS?) Pb-Pb 5.5 TeV, 5 weeks	pp 5.5: 300/pb ATLAS/CMS, 25/pb LHCb, 3/pb ALICE pp 8.8: 100/pb ATLAS/CMS/LHCb, 1.5/pb ALICE	
	2023 (4 weeks)	pp 8.8 TeV, few days p-Pb 8.8 TeV, 3.x weeks	Ο-Ο: 500/μb p-Ο: 200/μb	
	LS3	ATLAS/CMS upgrades, ALICE: ITS3? FoCal?		
R U	2027 (4 weeks)	Pb-Pb 5.5 TeV, 3 weeks pp 5.5 TeV, 1 week	Pb-Pb: 6.8/nb, ALICE/ATLAS/CMS, 1/nb LHCb p-Pb: 0.6/pb ATLAS/CMS, 0.3/pb ALICE/LHCb	
N 4	2028 (6 weeks)	Pb-Pb 5.5 TeV, 2 weeks p-Pb 8.8 TeV, 3.x weeks pp 8.8 TeV, few days	pp 5.5: 300/pb ATLAS/CMS, 25/pb LHCb, 3/pb ALICE pp 8.8: 100/pb ATLAS/CMS/LHCb, 1.5/pb ALICE	
	2029 (4 weeks)	Pb-Pb 5.5 TeV, 4 weeks		
	LS4			
RU	J N 5	Intermediate A-A, 11 weeks pp reference, 1 week	E.g. Ar-Ar 3-9/pb (optimal species to be defined)	

This is a proposal agreed in WG5 and reflects the physics discussed in the YR. The final run schedule is decided by the LHCC upon discussion with the experiments.

Opportunities and Challenges @LHC

Proposed Run Schedule

all to be read as +1 year

	Year	Systems, time, L _{int}	Total per Run (3 and 4)	
R U	2021 (4 weeks)	Pb-Pb 5.5 TeV, 3 weeks pp 5.5 TeV, 1 week	Pb-Pb: 6.2/nb ALICE/ATLAS/CMS, 1/nb LHCb p-Pb: 0.6/pb ATLAS/CMS, 0.3/pb ALICE/LHCb	
N 3	2022 (6 weeks)	p-O + O-O 7 TeV, 1 week (after EYETS?) Pb-Pb 5.5 TeV, 5 weeks	pp 5.5: 300/pb ATLAS/CMS, 25/pb LHCb, 3/pb ALICE pp 8.8: 100/pb ATLAS/CMS/LHCb, 1.5/pb ALICE	
	2023 (4 weeks)	pp 8.8 TeV, few days p-Pb 8.8 TeV, 3.x weeks	p-O: 200/μb	
	LS3	ATLAS/CMS upgrades, ALICE: ITS3? FoCal?		
R U N 4	2027 (4 weeks)	Pb-Pb 5.5 TeV, 3 weeks pp 5.5 TeV, 1 week	Pb-Pb: 6.8/nb, ALICE/ATLAS/CMS, 1/nb LHCb p-Pb: 0.6/pb ATLAS/CMS, 0.3/pb ALICE/LHCb pp 5.5: 300/pb ATLAS/CMS, 25/pb LHCb, 3/pb ALICE pp 8.8: 100/pb ATLAS/CMS/LHCb, 1.5/pb ALICE	
	2028 (6 weeks)	Pb-Pb 5.5 TeV, 2 weeks p-Pb 8.8 TeV, 3.x weeks pp 8.8 TeV, few days		
	2029 (4 weeks)	Pb-Pb 5.5 TeV, 4 weeks		
	LS4			
R	J N 5	Intermediate A-A, 11 weeks pp reference, 1 week	E.g. Ar-Ar 3-9/pb (optimal species to be defined)	

This is a proposal agreed in WG5 and reflects the physics discussed in the YR. The final run schedule is decided by the LHCC upon discussion with the experiments.

Opportunities and Challenges @LHC

Proposed Run Schedule

all to be read as +1 year

Detector Upgrade [an example]

experiment

Designed for :

- pp, pA and AA collisions
- Luminosities 20 to 50 higher than ALICE detector (upgraded for LS2 and LS3)

[Adamová et al:1902.01211]

Compact, next-generation multi-purpose detector at the LHC as a follow-up to the present ALICE

CMS and ATLAS with similar efforts

Detector Upgrade [an example]

experiment

Designed for :

- pp, pA and AA collisions
- Luminosities 20 to 50 higher than ALICE detector (upgraded for LS2 and LS3)

Rich physics program:

- Heavy flavour and quarkonia
- Low-mass dileptons (0 < m < 3 GeV)
- Chiral Symmetry Restoration
- Soft and ultra-soft photons ($1 < p_T < 100 \text{ MeV}$)

[Adamová et al:1902.01211]

Compact, next-generation multi-purpose detector at the LHC as a follow-up to the present ALICE

CMS and ATLAS with similar efforts

Light lons

Ar, ?? A = 40, ??

Pb A = 206

企 Volume and Lifetime 企 Temperature ☆ Multiplicity

L. Apolinário

[WG5 on HL/HE-LHC: 1902.01211]

QGP effects experimentally confirmed

[WG5 on HL/HE-LHC: 1902.01211]

QGP effects experimentally confirmed

Particle Physics for the Future of Europe

$$\mathcal{L}_{NN}^{ArAr} = [8; 25] \times \mathcal{L}_{NN}^{PbPb}$$

~ order of magnitude increase in number of hard processes

[WG5 on HL/HE-LHC: 1902.01211]

Studies of System Size dependence

L. Apolinário

Flow Coefficients based on strong variation of spatial eccentricity of nuclear overlap

.01211]
p
one <i>et al</i> - ne <i>et al</i> - e <i>et al</i> _

Better control on initial condition to collectivity studies

L. Apolinário

[WG5 on HL/HE-LHC: 1902.01211]

Fixing centrality and varying overall size allows for disentanglement of eventaveraged eccentricity from its event-by-event fluctuations

Particle Physics for the Future of Europe

Future Opportunities and Challenges

Towards a Future hadronic collider

QCD Precision studies

Accessible at e⁺+e⁻, p+p, p+h,...

QCD Coupling constant: $\alpha_s(Q^2)$

Least-known coupling of the SM with a large impact: Collinear factorisation (PDFs, FF, Hadronisation), Lattice calculations, pQCD at NnLO,...

QCD Precision studies

Accessible at e⁺+e⁻, p+p, p+h,...

QCD Coupling constant: $\alpha_s(Q^2)$

Least-known coupling of the SM with a large impact: Collinear factorisation (PDFs, FF, Hadronisation), Lattice calculations, pQCD at NnLO,...

- Highly-boosted dijets, multijets, pentaquarks and other exotic hadron structures,...
- non-pQCD (color reconnection, hadronisation,...)

Particle Physics for the Future of Europe

QGP Bulk properties

Future hadronic accelerator will bring a larger/denser/hotter and long-lived medium:

Quantity	Pb–Pb 5.5 TeV	Pb-Pb 10.6 TeV	Pb
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ at $\eta=0$	2000	2400	
$\mathrm{d}E_\mathrm{T}/\mathrm{d}\eta$ at $\eta=0$	2.3–2.6 TeV	3.1–3.4 TeV	5.
Homogeneity volume	6200 fm ³	7400 fm^3	1
Decoupling time	11 fm/c	11.5 fm/c	
ε at $\tau=1~{\rm fm/}c$	16-17 GeV/fm ³	22-24 GeV/fm ³	35–

Expected impact on medium bulk proprerties:

- Denser medium \Rightarrow longer expansion and larger volume (before freeze-out)
- Higher Initial energy \Rightarrow larger temperature and smaller thermalisation time

QGP Bulk properties

Future hadronic accelerator will bring a larger/denser/hotter and long-lived medium:

Quantity	Pb–Pb 5.5 TeV	Pb-Pb 10.6 TeV	Pb
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ at $\eta=0$	2000	2400	
$\mathrm{d}E_\mathrm{T}/\mathrm{d}\eta$ at $\eta=0$	2.3–2.6 TeV	3.1–3.4 TeV	5.
Homogeneity volume	6200 fm ³	7400 fm^3	1
Decoupling time	11 fm/c	11.5 fm/c	
ε at $\tau=1~{\rm fm/}c$	16-17 GeV/fm ³	22-24 GeV/fm ³	35–

Expected impact on medium bulk proprerties:

- Denser medium \Rightarrow longer expansion and larger volume (before freeze-out)
- Higher Initial energy \Rightarrow larger temperature and smaller thermalisation time

Novel Qualitative features:

- Thermal charm production
- Dependence of the QCD EoS with quark masses (larger d.o.f)

Unlock Novel probes of the QGP:

- W/Z + jet, ttbar events
- Novel features on J/ψ and Y states

[Liu et al (09), Zhao et al (11), Andronic et al, 11]

Quarkonia production in the QGP:

- Sequential melting (can be used as a thermometer)

Illustration: A.Rothkopf

Particle Physics for the Future of Europe

[Liu et al (09), Zhao et al (11), Andronic et al, 11]

Illustration: A.Rothkopf

Quarkonia production in the QGP:

- Sequential melting (can be used as a thermometer)
- Recombination with QGP thermal quarks

Striking evidence of cc recombination

L. Apolinário

[Liu et al (09), Zhao et al (11), Andronic et al, 11]

Illustration: A.Rothkopf

Quarkonia production in the QGP:

- Sequential melting (can be used as a thermometer)
- Recombination with QGP thermal quarks

L. Apolinário

[Liu et al (09), Zhao et al (11), Andronic et al, 11]

Quarkonia production in the QGP:

- Sequential melting (can be used as a thermometer)
- Recombination with QGP thermal quarks

Possible suppression of the tightly bound state of Y(1S)

Jet quenching

Reconstructed W mass: m_W Will depend on the energy that is lost (medium length that jet is able to "see")

Jet quenching

Reconstructed W mass: m_W Will depend on the energy that is lost (medium length that jet is able to "see")

First QGP tomographic analysis

- Very successful data taking for HIC at LHC was completed (5.02 TeV PbPb, 8.15 TeV pPb).
 - Next years will have a rich physics program (HL-LHC: Run3 and Run4) that will bring a significant advance in the field for the next decade
 - Rare challenging observables (e.g: photons, di-leptons, jets,...) together with lighter ions, will provide new insight and precise characterisation of the QGP

- Very successful data taking for HIC at LHC was completed (5.02 TeV PbPb, 8.15 TeV pPb).
 - Next years will have a rich physics program (HL-LHC: Run3 and Run4) that will bring a significant advance in the field for the next decade
 - Rare challenging observables (e.g. photons, di-leptons, jets,...) together with lighter ions, will provide new insight and precise characterisation of the QGP
- Future leptonic collider: crucial step to increase QCD precision studies (input particle physics) and preparation for the hadronic collider

- Very successful data taking for HIC at LHC was completed (5.02 TeV PbPb, 8.15 TeV pPb).
 - Next years will have a rich physics program (HL-LHC: Run3 and Run4) that will bring a significant advance in the field for the next decade
 - Rare challenging observables (e.g. photons, di-leptons, jets,...) together with lighter ions, will provide new insight and precise characterisation of the QGP
- Future leptonic collider: crucial step to increase QCD precision studies (input particle physics) and preparation for the hadronic collider
- Future high-energy AA/pA/pp collider: research is unique and provides essential science at the frontline towards a profound understanding of Hot and Dense QCD matter

- Very successful data taking for HIC at LHC was completed (5.02 TeV PbPb, 8.15 TeV pPb).
 - Next years will have a rich physics program (HL-LHC: Run3 and Run4) that will bring a significant advance in the field for the next decade
 - Rare challenging observables (e.g. photons, di-leptons, jets,...) together with lighter ions, will provide new insight and precise characterisation of the QGP
- Future leptonic collider: crucial step to increase QCD precision studies (input particle physics) and preparation for the hadronic collider
- Future high-energy AA/pA/pp collider: research is unique and provides essential science at the frontline towards a profound understanding of Hot and Dense QCD matter

HI collisions open exploration of uncharted QCD phase space (hot and dense) allowing numerous stringent tests to the SM

Thank you!

Acknowledgments

Special thanks to:

L. Apolinário

R. Conceição, G. Milhano, J. Pires

Acknowledgments

L. Apolinário

Backup Slides

(Nuclear) PDFs

Currently, PDFs cannot be computed from first principles Need to be extracted from data

quarks and substantial **constraints** to gluon nPDF

Hints of breaking of linear evolution at HERA but not yet conclusive evidence...

Need to be extracted from data

Need to be extracted from data

Need to be extracted from data

$$\mathcal{L}_{NN}^{ArAr} = [8; 25] \times \mathcal{L}_{NN}^{PbPb}$$

~ order of magnitude increase in number of hard processes

[WG5 on HL/HE-LHC: 1902.01211]

y-y Collisions

Effective yy luminosity: FCC-hh largest yy luminosity

y-y Collisions

Effective yy luminosity: FCC-hh largest yy luminosity

Particle Physics for the Future of Europe

p-p $\sqrt{s} = 7 \text{ TeV}$

60

Pb-Pb $\sqrt{s_{\scriptscriptstyle NN}} = 5.5 ~{\rm TeV}$

80

100

Light-by-light scattering measurement:

- Sensitivity to BSM physics (e.g: new heavy-charged SYSY particles)

 \mapsto linear

- Axion-like particles

OPAL, 2γ

- ...

 10^{-3}

 $1/\Lambda$ (GeV⁻¹)

 10^{-5}

19

log

Beam

Dump

JO?

10

 $\sqrt[6]{5}$

20

40

 $m_a \; (\text{GeV})$

d'Enterria et al (17) Knapen et al (17)

 $aF\widetilde{F}$ coupling

OPAL, 3

ATLAS, 2γ

