Hunting for new physics with dibosons at the LHC

Inês Ochoa November 12th

Outline

- Motivation:
 - Why search for diboson resonances?
- Latest ATLAS diboson resonance searches
 - Boosted boson tagging
 - Data-driven background estimation
- What next?
 - New strategies and analysis techniques
- Summary

Motivation

The Standard Model is not the complete picture

- No known candidate for dark matter.
- Matter dominance over antimatter.
- No explanation for masses of particles.
- No explanation for number of generations.
- Gravity not taken into account.

٠

. . .

How do we extend it?

- There are many ways to extend the SM to address some / many of the missing pieces.
- ...but no single well-motivated scenario until there is a discovery!
- Need for unbiased and comprehensive approach to New Physics searches to take advantage of the vast and rich LHC dataset.

Higgs and gauge bosons as gates to the unknown

- Precision measurements SM processes so far in excellent agreement with predictions.
- A new resonance would provide the most dramatic signal of New Physics, with minimal assumptions.
- Many SM extensions predict new resonances that couple to the gauge and Higgs bosons:
 - Could alleviate **naturalness** problem of the Higgs boson mass...

 Experimentally, Higgs and gauge bosons have well-defined signatures that can be targeted using state-of-the-art techniques.

Searches for diboson resonances

A rich phenomenology

- Looking for Beyond-the-SM physics means exploring a vast and multi-dimensional space.
 - Simplified models used to make generic predictions on specific processes.
- Examples of BSM scenarios predicting diboson resonances:
 - Spin-0: extended Higgs sector (e.g. 2HDM)
 - Spin-1: W' and Z' bosons from new gauge groups
 - Spin-2: gravitons in warped extra dimensions

Mass

A vast collection of final states

+ W/Z/H+¥ combinations

- Different analysis target different combinations of SM bosons:
 - ➡ W, Z, H, photons
- ...and the W,Z leptonic or hadronic decay channels:
 - ➡ Trade-off between signal purity and branching ratios.

A vast collection of final states

+ W/Z/H+¥ combinations

- Different analysis target different combinations of SM bosons:
 - ➡ W, Z, H, photons
- ...and the W,Z leptonic or hadronic decay channels:
 - ➡ Trade-off between signal purity and branching ratios.

Aside: jets in the ATLAS detector

- A jet is a collection of particles produced by outgoing quarks or gluons:
 - Built from a combination of charged particle tracks and calorimeters deposits.
- Jets for W/Z/Higgs reconstruction:
 - ✓ Large radius to capture full decay products.
 - ✓ Removal of pile-up and underlying event contributions.

Average 33 collisions per bunch crossing in Run 2.

Hadronic final states

BR(W/Z→qq)~70% BR(H→bb)~60%

- Diboson resonance searches target a vast kinematic regime:
 - New particles with masses of order 100 GeV all the way up to several TeV!
- At low masses, leptonic decays are the most sensitive: easier trigger strategy, cleaner event reconstruction (even if under-constrained in case of neutrinos).

- Fully-hadronic final states are ideally suited for the high mass region:
 - ✓ Branching ratio advantage: dominant decay modes of W,Z,H bosons.
 - ✓ Smoothly falling Standard Model background (dominated by quark and gluon initiated jets -"QCD processes").

The "boosted" regime

Boosted jets: Increasing transverse momentum, $\ensuremath{p_{\text{T}}}$

- As p_{T,boson} >> m_{boson}, the boson decay products become increasingly collimated in the lab frame.
- - We need boosted boson tagging techniques to identify jets from boson decays and suppress the QCD background.

Ingredients for boosted boson tagging

1. Mass 2. Substructure **3. Flavour**

Н

- A b-hadron decay provides a measurable displaced secondary vertex in the detector.
- B-tagging algorithms for identifying b-jets and suppressing light-jets.

Search strategy

- ✓ Boosted boson tagging techniques
- Background estimation: we rely on a smoothly falling distribution for the mass of the diboson system, on top of which we look for a resonant bump.
 - Requires data-driven techniques, different ones will be shown today.

In this talk

- Will focus on three results from the ATLAS Collaboration in fully-hadronic decay channels:
 - Y→VV→qqqq: <u>JHEP09(2019)091</u>
 - Y→VH→qqbb: <u>2007.05293</u> (recently submitted to PRD)
- V = W, Z

• Y→Hy→bby: <u>2008.05928</u> (just accepted to PRL)

Latest results

JHEP09(2019)091

V+jets:

JHEP09(2019)091

Used to extract W/Z tagger efficiency corrections between data and simulation.

QCD:

Direct fit to observed m_{VV} spectrum in the signal region B.

Validated in regions A, C, D.

$$\frac{\mathrm{d}n}{\mathrm{d}x} = p_1 (1-x)^{p_2 - \xi p_3} x^{-p_3}$$

$$x = m_{\rm JJ}/\sqrt{s}$$

Done separately for three overlapping selections: WW, WZ and ZZ.

Can combine results into WW + WZ and WW + ZZ according to signal interpretation.

JHEP09(2019)091

ddpp **H**

Most powerful handle on Higgs boson identification: b-tagging of two jets inside large-radius jet.

1. Extract template from data events where no b's are found ("0-tag" region)

- 1. Extract template from data events where no b's are found ("0-tag" region)
- 2. Using a sideband, extract multi-dimensional ratio between 0-tag and 2-tag with a boosted decision tree (BDT)

x = four-vectors of small radius jets, W/Z and Higgs $p_{\text{T}},\,...$

2007.05293

Higgs boson candidate mass [GeV]

- 1. Extract template from data events where no b's are found ("0-tag" region)
- 2. Using a sideband, extract multi-dimensional ratio between 0-tag and 2-tag with a boosted decision tree (BDT)
- 3. "Correct" 0-tag template to obtain a background prediction in 2-tag

 \checkmark Use validation regions in data to confirm quality of background description

Results produced separately for WH and ZH search (W and Z regions overlap) ZH results shown here: events with 2 b-jets on the left, events with 1 b-jet on the right (Event display from $Zy \rightarrow \mu\mu\gamma$ search)

Not a jet 🤓

Run: 281411 Event: 2191483814 2015-10-12 11:35:11 CEST

bby

Hy

Phys. Lett. B 764 (2017) 11

Another method for identifying boosted Higgs bosons decaying to pairs of b-quarks

Tracks are associated to each candidate "b-jet" in the rest frame of the Higgs candidate Also large acceptance gain at high transverse momentum

34

Hy→bby Results

Fit function validated in control data samples (sidebands and 0-tags)

$$B(m_{J\gamma}) = (1-x)^{p_1} x^{p_2 + p_3 \log(x)}$$

2008.05928

Limits and exclusions

Towards a big picture

What next?

The LHC timeline

- The experiments are currently undergoing Phase-I of the planned upgrades in order to improve and/or maintain trigger rates and data taking capabilities.
- These are relatively early days: HL-LHC integrated luminosity goal of 3000-4000 fb⁻¹.
- But the energy reach won't increase significantly and it will take some time until we double ٠ the current integrated luminosity:
 - It is critical to keep developing new analysis ideas and methods to fully explore the Run 2 data. 39

New techniques

Inputs to jet reconstruction

• Tracking information can be incorporated into jet substructure to benefit from better spatial resolution of the tracker in addition the excellent energy resolution of the calorimeter.

 New "Unified Flow Objects" will provide optimal performance across a wide kinematic range and in dense environments typical of high p_T jets.

ATL-PHYS-PUB-2017-015

JETM-2018-06

Dedicated Higgs boson taggers $H \rightarrow bb$

- Mature techniques in place for identifying individual b-jets using deep neural networks, optimised for vast kinematic range.
- Can take on step further and train classifier neural networks directly on boosted H→bb jets against main expected backgrounds (coming from top and QCD processes):
 - Exploiting flavour information correlations within Higgs candidate.

Dedicated Higgs boson taggers $_{H \rightarrow \tau\tau}$

 Exploring calorimetric shower shapes and tracking information to distinguish between TT pairs (when both T-leptons decay hadronically) and QCD background.

2007.14811

• BDT trained to classify Higgs to TT jets against background dominated data.

Broadening the scope

Broadening the scope

- What if we extend the search phase-space by not assuming Standard Model bosons?
- First exploration by ATLAS with 2015+2016 data:
 - Y→XH where X is unknown: assumption is that it decays to jets and has a mass in the range 50 GeV to O(1 TeV), <u>Phys. Lett. B 779 (2018) 24</u>.
- Can be taken further by searching for A→BC events with no assumption on either particle:
 - A task for anomaly detection techniques!

Generic search $A \rightarrow BC$

Weak supervision with CWoLa

- Generic search for new resonances via anomaly detection procedure:
 - Suited for massive resonance decay with di-jet topology, using with large-radius jets.
- CWoLa method: Classification WithOut LAbels (<u>PhysRevLett.121.241803</u>).
 - Train neural networks to distinguish between signal region and sidebands in data.

Generic search $A \rightarrow BC$

Weak supervision with CWoLa

- Generic search for new resonances via anomaly detection procedure:
 - Suited for massive resonance decay with di-jet topology, using with large-radius jets.
- CWoLa method: Classification WithOut LAbels (PhysRevLett.121.241803).
 - Train neural networks to distinguish between signal region and sidebands in data.

- The LHC experiments are in a great position to tackle some of the questions left unanswered by the Standard Model.
- There is a plethora of experimental results placing constraints on SM extensions that predict diboson resonances.
 - Focus here was on fully-hadronic searches at very high masses, part of a broad and comprehensive search programme.
- Progress depends on the development of new analysis ideas and methods to keep exploring the LHC data for New Physics:
 - Improved "tagging" techniques to extract more sensitivity from the Run 2 dataset.
 - Anomaly detection for broadening the scope of analyses.
 - ...a lot more that couldn't fit in this talk.

Thank you for your attention!

Theoretical scenarios (I)

Warped Extra Dimensions / bulk "RS" model

- Extension of Randall Sundrum models: gravity propagates in warped extra dimension.
 - The original RS model confines SM particles to a 4D brane, in the bulk RS model the SM particles extend into the "bulk".
- The most distinctive feature of this scenario is the existence of spin-2 Kaluza-Klein (KK) gravitons whose masses and couplings to the SM are set by the TeV scale.
- Couplings to light fermions suppressed.
- Gluon-gluon fusion dominant production channel.

Theoretical scenarios (II)

Heavy Vector Triplets

- Benchmark models are defined according to different parameter values.
- Model A: gV = 1: Extended gauge symmetry, with comparable branching ratios into bosons and fermions.
- Model B: gV = 3: Strongly coupled scenarios, suppressed branching ratios into fermions
- VBF model: Couplings to fermions set to zero, couplings to boson similar to Model A.
- For Models A and B, intrinsic width assumed much narrower than detector resolution: ~2.5%

Figure 2.1: Upper panel: Branching Ratios for the two body decays of the neutral vector V^0 for the benchmarks $A_{g_V=1}$ (left) and $B_{g_V=3}$ (right). Lower panel: Total widths corresponding to different values of the coupling g_V in the models A (left) and B (right).

Jet substructure

- The D₂^{β=1} variable is useful in identifying jets with two-prong substructures.
- Defined from n-point energy correlation functions:

$$\begin{split} E_{\mathrm{CF1}}(\beta) &= \sum_{i \in J} p_{\mathrm{T}_i}, \\ E_{\mathrm{CF2}}(\beta) &= \sum_{i < j \in J} p_{\mathrm{T}_i} p_{\mathrm{T}_j} \left(\Delta R_{ij} \right)^{\beta}, \\ E_{\mathrm{CF3}}(\beta) &= \sum_{i < j < k \in J} p_{\mathrm{T}_i} p_{\mathrm{T}_j} p_{\mathrm{T}_k} \left(\Delta R_{ij} \Delta R_{ik} \Delta R_{jk} \right)^{\beta} \end{split}$$

$$D_2^{\beta=1} = E_{\rm CF3} \left(\frac{E_{\rm CF1}}{E_{\rm CF2}}\right)^3$$

Jet mass

Entries

$\begin{array}{c} 0.4 \\ 0.35 \\ 0.35 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.25 \\ 0.2 \\ 0.15 \\ 0.1 \\ 0$

1000

1500

2000

2500

 $p_{_{
m T}}^{
m true}$ [GeV]

Jet mass

0.05

0

500

JETM-2018-06

Sensitivity based optimisation

https://arxiv.org/pdf/physics/0308063.pdf

• Significance measure independent of cross-section of new processes:

 $\epsilon/(a/2+\sqrt{B})$

 ϵ = per signal jet / event efficiency

a = number of standard-deviations corresponding to a one-sided Gaussian distribution

B = number of background jets / events after selection

VV

Figure 3: The (a) per-boson signal efficiency for the jet mass, D_2 , and n_{trk} selections, as well as the combined efficiency and (b) background rejection (1/efficiency) of the W tagger for HVT $W' \rightarrow WZ \rightarrow qqqq$ and MC simulated multijets as a function of the jet p_T . Corresponding values for the Z tagger are shown in (c) and (d).

VHqqbb (I)

Exclusive centre-of-mass (CoM)

- EECambridge algorithm on calorimeter constituents after boost to large-R jet rest frame, run in exclusive mode with number of subjets N_{sj}=2.
 - Based on angular separation $y_{ij}=2(1-\cos\theta_{ij})$.
- Track-to-subjet association is also based on their angular separation in the CoM frame (contrast with dR association used for other algorithms)
 - Background rejection studied for different values of y_{cut.}

2007.14811

Dedicated Higgs boson taggers $H \rightarrow TT$

Table 1: Discriminating variables used in the di- τ identification BDT, aimed at rejecting the background from quarkand gluon-initiated jets. Here, LRJ refers to the seeding large-radius jet of the di- τ object, sj₁ and sj₂ stand for the first and second sub-jets ordered in p_T , respectively, and tracks refer to those matched to a sub-jet (τ track), unless specified otherwise.

Variable	Definition
$E_{\Delta R<0.1}^{\rm sj_1}/E_{\Delta R<0.2}^{\rm sj_1}$ and $E_{\Delta R<0.1}^{\rm sj_2}/E_{\Delta R<0.2}^{\rm sj_2}$	Ratios of the energy deposited in the core to that in the full cone, for the sub-jets sj_1 and sj_2 , respectively
$p_{\rm T}^{\rm sj_2}/p_{\rm T}^{\rm LRJ}$ and $(p_{\rm T}^{\rm sj_1}+p_{\rm T}^{\rm sj_2})/p_{\rm T}^{\rm LRJ}$	Ratio of the $p_{\rm T}$ of sj ₂ to the di- τ seeding large-radius jet $p_{\rm T}$ and ratio of the scalar $p_{\rm T}$ sum of the two leading sub-jets to the di- τ seeding large-radius jet $p_{\rm T}$, respectively
$\log(\sum p_{\mathrm{T}}^{\mathrm{iso-tracks}}/p_{\mathrm{T}}^{\mathrm{LRJ}})$	Logarithm of the ratio of the scalar $p_{\rm T}$ sum of the iso-tracks to the di- $ au$ seeding large-radius jet $p_{\rm T}$
$\Delta R_{\max}(\text{track}, \text{sj}_1) \text{ and } \Delta R_{\max}(\text{track}, \text{sj}_2)$	Largest separation of a track from its associated sub-jet axis, for the sub-jets sj_1 and sj_2 , respectively
$\sum [p_{\rm T}^{\rm track} \Delta R({\rm track},{\rm sj}_2)] / \sum p_{\rm T}^{\rm track}$	$p_{\rm T}$ -weighted ΔR of the tracks matched to sj ₂ with respect to its axis
$\sum [p_{\rm T}^{\rm iso-track} \Delta R({\rm iso-track, sj})] / \sum p_{\rm T}^{\rm iso-track}$	$p_{\rm T}$ -weighted sum of ΔR between iso-tracks and the nearest sub-jet axis
$\log(m_{\Delta R < 0.1}^{\text{tracks}, \text{sj}_1})$ and $\log(m_{\Delta R < 0.1}^{\text{tracks}, \text{sj}_2})$	Logarithms of the invariant mass of the tracks in the core of sj_1 and sj_2 , respectively
$\log(m_{\Delta R < 0.2}^{\text{tracks, sj}_1})$ and $\log(m_{\Delta R < 0.2}^{\text{tracks, sj}_2})$	Logarithms of the invariant mass of the tracks with $\Delta R < 0.2$ from the axis of sj ₁ and sj ₂ , respectively
$\log(d_{0,\text{lead-track}}^{\text{sj}_1})$ and $\log(d_{0,\text{lead-track}}^{\text{sj}_2})$	Logarithms of the closest distance in the transverse plane between the primary vertex and the leading track of sj_1 and sj_2 , respectively
$n_{ m tracks}^{ m sj_1}$ and $n_{ m tracks}^{ m sub-jets}$	Number of tracks matched to sj_1 and to all sub-jets, respectively

$A \rightarrow BC$ with weak supervision

Non-ATLAS figures taken from <u>CERN</u> <u>seminar</u> by Aviv Cukierman.

