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OVERVIEW

● Evidences for dark matter
● The dark matter problem
● Dark matter candidates
● Search for dark matter particles
● Direct detection experiments
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EVIDENCES FOR DARK MATTER

From gravitational effects observed over a wide range of astronomical scales 
we infer that ~85% of the mass content of the universe does emit or absorb 
electromagnetic radiation  Dark matter (DM)

Galaxies in clusters (~10 Mpc) move much faster than expected 
(Fritz Zwicky, 1933)

Coma cluster
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EVIDENCES FOR DARK MATTER

From gravitational effects observed over a wide range of astronomical scales 
we infer that ~85% of the mass content of the universe does emit or absorb 
electromagnetic radiation  Dark matter (DM)

Stars in galaxies (~100 kpc) rotate much faster than expected 
(Vera Rubin, 1970)

Andromeda galaxy
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EVIDENCES FOR DARK MATTER

From gravitational effects observed over a wide range of astronomical scales 
we infer that ~85% of the mass content of the universe does emit or absorb 
electromagnetic radiation  Dark matter (DM)

Gravitational lensing, Bullet Cluster, etc

Observer

Apparent 
position
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EVIDENCES FOR DARK MATTER

From gravitational effects observed over a wide range of astronomical scales 
we infer that ~85% of the mass content of the universe does emit or absorb 
electromagnetic radiation  Dark matter (DM)

Bullet Cluster, gravitational lensing, etc

Bullet Cluster
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EVIDENCES FOR DARK MATTER

From gravitational effects observed over a wide range of astronomical scales 
we infer that ~85% of the mass content of the universe does emit or absorb 
electromagnetic radiation  Dark matter (DM)

Large-scale structure of the universe (~1 Gpc)

Hot DM Warm DM Cold DM
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EVIDENCES FOR DARK MATTER

From gravitational effects observed over a wide range of astronomical scales 
we infer that ~85% of the mass content of the universe does emit or absorb 
electromagnetic radiation  Dark matter (DM)

Anisotropies in cosmic microwave background (entire universe)

With DM Without DM

https://chrisnorth.github.io/planckapps/Simulator/

https://chrisnorth.github.io/planckapps/Simulator/
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THE DARK MATTER PROBLEM

Standard Model (SM) particles cannot account for DM  New elementary particles?

The evidences for DM are very strong. DM is a necessary component in 
modern astrophysics and cosmology models (ΛCDM)

From CMB measurements (Planck satellite), our universe is made of:
● Ordinary matter: (4.8 ± 0.1)%
● Cold DM: (25.8 ± 0.5)%
● The rest is dark energy

But what is DM made of?
● Its elementary constituents are neutral (because they do not interact 

with electromagnetic radiation): excludes quarks and charged leptons
● It is cold: excludes neutrinos
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DARK MATTER CANDIDATES

DM is a problem that extends from astrophysics and cosmology to particle 
physics

Astronomical observations do not provide any information on the mass 
of DM particles  The mass of DM particles is largely unconstrained
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DARK MATTER CANDIDATES

DM is a problem that extends from astrophysics and cosmology to particle 
physics

It is assumed that DM has some type of interaction with ordinary matter 
besides gravity  Possible processes are:
● Creation of DM from SM particles
● Annihilation of DM into SM particles

Creation

Annihilation
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DARK MATTER CANDIDATES

This hypothesis directly explains the observed amount of DM in the 
universe through the freeze-out mechanism (“WIMP miracle”)

High particle density: DM in 
equilibrium with ordinary 
matter and radiation

Creation of DM (SM → DM) 
is balanced with annihilation 
of DM (DM → SM)

Lower particle density: 
Unable to sustain creation 
or annihilation of DM

Number of DM particles 
remains constant

N(DM) = N(anti-DM)

Weakly-interacting massive particles (WIMPs): assume that DM 
interacts with ordinary matter through the SM weak interaction
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DARK MATTER CANDIDATES

Dark photons, Higgs portals, etc

High particle density: DM in 
equilibrium with ordinary 
matter and radiation

Creation of DM (SM → DM) 
is balanced with annihilation 
of DM (DM → SM)

Hidden sector DM: theories based also on the freeze-out mechanism, that 
use new interactions to couple DM to ordinary matter

Lower particle density: 
Unable to sustain creation 
or annihilation of DM

Number of DM particles 
remains constant

N(DM) = N(anti-DM)
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DARK MATTER CANDIDATES

Freeze-in DM: explains the observed amount of DM in the universe by 
assuming 1) very small interaction with ordinary matter, and 2) no DM 
in early universe

High particle density: allows 
creation of DM from SM 
particles

Lower particle density: 
Unable to sustain creation 
of DM

Number of DM particles 
remains constant

N(DM) = N(anti-DM)

As in freeze-out mechanism, the amount of DM does not depend on 
details of the early universe
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DARK MATTER CANDIDATES

Asymmetric DM: assumes that the process that caused baryon 
asymmetry also generated DM  Asymmetry between DM and anti-DM

Directly explains why the amounts of DM and ordinary matter are 
nearly of the same order of magnitude

If N(DM) = N(protons, neutrons), then M(DM) ≈ 5×M(proton) ≈ 5 GeV
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SEARCH FOR DARK MATTER PARTICLES

Three approaches to search for DM particles:
● Collider production: search for excess of events with missing transverse 

energy due to new undetected particles (although not necessarily DM!)
● Indirect detection: search for excess of cosmic rays due to DM annihilation 

occurring in galaxy centers, etc
● Direct detection (more details later)



17

SEARCH FOR DARK MATTER PARTICLES

Three approaches to search for DM particles:
● Collider production: search for excess of events with missing transverse 

energy due to new undetected particles (although not necessarily DM!)
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SEARCH FOR DARK MATTER PARTICLES

Three approaches to search for DM particles:
● Collider production: search for excess of events with missing transverse 

energy due to new undetected particles (although not necessarily DM!)
● Indirect detection: search for excess of cosmic rays due to DM annihilation 

occurring in galaxy centers, etc
● Direct detection (more details later)

Fermi-LAT
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SEARCH FOR DARK MATTER PARTICLES

Three approaches to search for DM particles:
● Collider production: search for excess of events with missing transverse 

energy due to new undetected particles (although not necessarily DM!)
● Indirect detection: search for excess of cosmic rays due to DM annihilation 

occurring in galaxy centers, etc
● Direct detection (more details later)

Gamma-ray map from Fermi-LAT
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DIRECT DETECTION EXPERIMENTS

Direct DM search: signal is a recoiling nucleus/electron, produced by the 
interaction with a DM particle

DM is expected to be distributed all over our galaxy, including our Solar 
System

Detected by ionization, 
scintillation, etc

M ~ O(10 GeV)

Then, if DM has some coupling to SM particles, we expect it to interact 
with ordinary matter on Earth

The greatest energy transfer occurs when M(target particle) ~ M(DM), 
therefore recoiling nuclei are preferred for M(DM) ~ 10 GeV – 100 GeV
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DIRECT SEARCH  FOR DARK MATTER

Direct detection (DD) experiments consist of a specific target material that 
has also the ability to detect recoiling particles

Experiments usually combine signals to identify recoiling nuclei: 
● Ionization+scintillation: LZ, XENON (Xe), DarkSide (Ar)

LZ Photon detectors

Photon detectors

S2 light
(delayed)

S1 light
(prompt)

Simulation of LZ events

Signal (DM)

Background
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DIRECT SEARCH  FOR DARK MATTER

Direct detection (DD) experiments consist of a specific target material that 
has also the ability to detect recoiling particles

Experiments usually combine signals to identify recoiling nuclei: 
● Phonons+ionization: SuperCDMS (Ge, Si), EDELWEISS (Ge)

Superconductor sensors on surface 
of semiconductor crystal Detector temperature ~ 50 mK
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DIRECT SEARCH  FOR DARK MATTER

Direct detection (DD) experiments consist of a specific target material that 
has also the ability to detect recoiling particles

Experiments usually combine signals to identify recoiling nuclei: 
● Phonons+ionization: SuperCDMS (Ge, Si), EDELWEISS (Ge)

Superconductor sensors on surface 
of semiconductor crystal

Principle of operation of 
superconductor sensors
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DIRECT SEARCH  FOR DARK MATTER

Direct detection (DD) experiments consist of a specific target material that 
has also the ability to detect recoiling particles

Experiments usually combine signals to identify recoiling nuclei: 
● Phonons+scintillation: CRESST (CaWO

4
)

Superconductor sensor on surface 
of scintillating crystal
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DIRECT SEARCH  FOR DARK MATTER

● Energy spectrum of recoiling nuclei depends on mass of DM particles (M

)

● Number of recoiling nuclei depends on strength of DM-nucleon interaction (
N

)
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Kinetic energy of recoiling nucleus (keV)

The density and velocity distribution of DM particles are assumed to be known

Galactic DM density
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DIRECT SEARCH  FOR DARK MATTER

● Energy spectrum of recoiling nuclei depends on mass of DM particles (M

)

● Number of recoiling nuclei depends on strength of DM-nucleon interaction (
N

)
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Kinetic energy of recoiling nucleus (keV)

The density and velocity distribution of DM particles are assumed to be known

Assumed velocity distribution of DM:
Maxwellian gas
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DIRECT SEARCH  FOR DARK MATTER

The minimum value of 
N

 that can be attained depends on:

● The number of target nuclei (i. e. the amount of target material)
● The exposure time
● The occurrence of events other than recoiling nuclei caused by DM: Background

Therefore, the result of a DD experiment provides information about the 
existence of DM particles with specific values of M


 and 

N

Experiment is sensitive to 
these values of M


 and 

N

Lower limit on 
N
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DIRECT SEARCH  FOR DARK MATTER

Background sources:
● Cosmic radiation reaching Earth surface (muons)  Underground laboratories
● External radioactivity (gammas, neutrons)  Shielding+radiopure materials
● Internal radioactivity (betas)  Purification of target material

LZ shielding+cryostat+TPC
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DIRECT SEARCH  FOR DARK MATTER

But: So far, these experiments have not found a conclusive DM signal yet

The null results obtained so far constrain the value of m

 and 

N

Traditionally, DD experiments have searched for DM particles with mass  
~10 GeV – 100 GeV (WIMPs)

Excluded values of M

 and 

N

Exclusion limits for 
M


 > 10 GeV
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DIRECT SEARCH  FOR DARK MATTER

Exclusion limits 
for M


 < 10 GeV

(*) DarkSide-50 results (2018) 
not included

But: So far, these experiments have not found a conclusive DM signal yet

The null results obtained so far constrain the value of m

 and 

N

Traditionally, DD experiments have searched for DM particles with mass  
~10 GeV – 100 GeV (WIMPs)
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CONCLUSIONS

● The existence of DM is based on very strong evidences, but we do not know 
what it is made of yet ( new physics)

● There are many theories to explain DM, that predict particle candidates that 
extend over a wide range of masses

● Determining the elementary constituents of DM is one of the most pressing 
objectives of modern science

● There are three approaches to search for DM particles: collider production, 
indirect detection and direct detection

● Direct searches aim to detect atomic constituents (nuclei or electrons) that 
recoil due to interactions with DM particles

● So far direct detection experiments have not provided a conclusive signal, 
therefore motivating further research in this area
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THANK YOU FOR YOUR 
ATTENTION...
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