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               1.
Introduction to Machine Learning 



Machine 
Learning is the 
subfield of AI 
that concerns 
how a machine 
can learn to 
perform tasks Machine Learning

Artificial 
Intelligence



Self-Taught Code
Machine Learning is a different 
paradigm of computing: a program 
that learns what it has to do



Classical 
Programming

Machine 
Learning

Rules Answers

RulesAnswers
Answers

New

= Decision 
Function

= Data



Deep Learning is 
a subclass of 
Machine 
Learning 
algorithms that 
train Neural 
Networks to 
perform tasks

Machine Learning

Artificial 
Intelligence

Deep 
Learning



Differentiable models that can be trained 
with Stochastic Gradient Descent

Unmatched representational power and 
are capable of feature abstraction: deeper 
layers abstract more complex relations

Extremely versatile and can take in data of 
many different shapes and formats

All state-of-the-art Machine Learning 
applications are based on Deep Learning 
and implement Neural Networks

Deep Learning
Neural Networks



Deep Learning
Loss Function

Loss function is a differentiable measure on how the model is performing 
the task and it works as the minimisation objective in terms of the NN 
parameters

Common Loss functions:

▪ Regression: Mean Squared Error

 
▪ Classification: Cross-Entropy



Data in 
HEP

In HEP we deal with huge amounts of data, comparable 
only to the big 5 (Microsoft, Google, Amazon, Apple, 
Facebook), and often come in many shapes

In this talk we will focus on two main types of data being 
collected or simulated at collider experiments:

➢ High-level physical observables from reconstructed 
objects
○ Used in New Physics searches

➢ Low-level detector information from calorimeter 
deposits and tracks
○ Carry no human bias but difficult to handle and use



               2.
Deep Learning in Searches for 
Generic New Physics

 



One of the main 
goals of the LHC 
is to look for 
New Physics

1. Choose BSM signal you are 
looking for

2. Study favourable kinematic 
region and final state topology

3. Collect the data in such regime 
4. Perform statistical tests on 

the data on the hypothesis of 
BSM being present

5. Profit (eventually)



Searches for New Physics
Operationally

● Data composed of high-level variables of 

reconstructed objects

● Isolate as much signal from background 

as possible

○ Rule of Thumb: Look for a “signal 

region” that maximises significance

● Perform the so-called limits, e.g. by 

employing the CLs method



Searches for New Physics
Machine Learning

● Using Monte-Carlo pseudo-data of 

Background (SM) and Signal (BSM) we 

can train a Classifier to isolate signal to 

increase sensitivity

● Either use a cut-off on the ML 

classifier outputs or perform CLs 

directly on its outputs



Transferability 
of Deep Learning 
Models in 
Searches for 
New Physics at 
Colliders

MCR, N. F. Castro, R. Pedro, 
T. Vale

Phys.Rev.D 101 (2020) 3, 
035042 [1912.04220]

▪ How does an NN classifier, 
trained to separate a specific 
signal from background, 
behave when shown a new 
signal?

▪ How does this impact upper 
limits on New Physics?

▪ Focused on three classes of 
signals:
○ FCNC
○ VLQ from SM production
○ VLQ from Heavy Gluon 

production



Transferability of Deep Learning Models
Analogy

Jungle is the Background (SM 

events) and we want to find 

monkeys (a BSM candidate)

What happens if instead of 

monkeys there is another animal in 

the data?

Would an NN still find the signal?



Transferability of Deep Learning Models
The Background

● A SM cocktail sample was produced in MadGraph5+Pythia8+Delphes
○ 8M Z+J, 3M ttbar, 1.5M per diboson sample

● Targeted processes with dilepton final state, at least one b, and HT > 
500

● To guarantee statistics at the tails of the distributions we applied event 
filter at parton level in pT slices

● The events are represented by variables from the reconstructed objects:
○ (η, φ, pT , m) for 5 leading jets and large-radius jets
○ (η, φ, pT ) of the 2 leading electrons and muons
○ Multiplicites, (ET , φ) of the missing transverse energy (MET)



Transferability of Deep Learning Models
The Signals

● 7 samples of BSM signals over three classes
● FCNC interaction in single top-quark production
● Vector-Like T quarks produced via SM gluon with three different masses

○ 1.0 TeV
○ 1.2 TeV
○ 1.4 TeV

● Vector-Like T quarks produced via BSM heavy (3TeV) bluon with three 
different masses
○ 1.0 TeV
○ 1.2 TeV
○ 1.4 TeV



Transferability of Deep Learning Models
Methodology

● For each signal train a supervised DNN classifier

● Use each trained DNN to predict on every combination 

signal-background

● Assess how discrimination deteriorates as we present a different signal 

to each DNN through upper limits on expected cross-section 



Transferability of Deep Learning Models



Transferability of Deep Learning Models
Upper Limits



Could we not just 
focus on the jungle?

Since we don’t know 
what BSM candidate is 
realised in nature, it 
seems it would be 
better if we could 
develop a way of 
identifying any type of 
non SM phenomena



Unsupervised Methods for New Physics Searches

● Growing interest in Unsupervised approaches to isolate New Physics  

from SM Background

● Anomaly Detection ML algorithms are finding their way into HEP to 

help this out

○ 1805.02664, 1808.08992, 1811.10276, 1902.02634, 

1903.02032, …

● A comprehensive live review of ML in HEP curated by CERN’s IML 

WorkGroup: https://github.com/iml-wg/HEPML-LivingReview



Finding New Physics 
without learning 
about it: Anomaly 
Detection as a tool 
for Searches at 
Colliders

MCR, N. F. Castro, R. Pedro

2006.05432

▪ We kept the same signals
○ FCNC
○ VLQ from SM production
○ VLQ from Heavy Gluon 

production
▪ We compared four AD 

algorithms
○ Auto-Encoder
○ Deep-SVDD
○ Isolation Forest
○ Histogram Based



Finding New Physics without learning about it
Auto-Encoder
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Finding New Physics without learning about it
Auto-Encoder

● The Network is trained by minimising the reconstruction error

● In principle, events that are easier to reconstruct are the most common

● Reconstruction error of an event can be a measure of how rare it is => 

BSM events should have higher reconstruction error



Finding New Physics without learning about it
Deep-SVDD
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Finding New Physics without learning about it
Deep-SVDD

● Before any training, the NN is just a map from the input space to some 
embedding space

● In this space we can find a “centre of mass”, c, of the points

x1

x
2

z1

z
2

NN



Finding New Physics without learning about it
Deep-SVDD

z1

z
2

Training

z1

z
2

● The Network is trained by minimising the distance to 

the centre of mass

● The bulk of the distribution will be easier to bring to 

the centre, the rarer events will be further away

● The distance to c becomes then a natural 

interpretation for outlyingness of an event



Finding New Physics without learning about it
Isolation Forest

● Recursively partition the data with 

random cuts

● These cuts can be represented as a 

tree

● Rare events will be easier to isolate 

● Anomaly score given by the inverse 

of how many nodes it took to 

isolate



Finding New Physics without learning about it
Histogram Based

● Compute histograms for all 

variables

● Rare events will more often be in 

bins of smaller height

● Anomaly score given by the sum of 

the Log of the heights of each bin 

an event occupies

Rare

Common

x1



Train only on 
Standard Model

This way we are learning 
what a jungle looks like 
and hopefully we will be 
able to find any animal!

Are different algorithms 
correlated?

Are they focusing on the 
same characteristics?



Finding New Physics without learning about it
Sanitisting Features

● Usually, different events have different reconstructed objects => 
Accumulations of densities in missing values

● NNs do not like discontinuous inputs => This can hinder performance
● We prepared a second set of features which attempts to mitigate this 

issue
○ Demand a FatJet and drop all the remainder
○ Keep only two leading leptons regardless of flavour



Finding New Physics without learning about it
Sanitisting Features



Finding New Physics without learning about it
Results 1: When they see new jungle



Finding New Physics without learning about it
Results 2: Are all AD algorithms created equally?



Finding New Physics without learning about it
Results 3: Can they find animals?



Finding New Physics without learning about it
Results 4: Can we search for New Physics?



Conclusions for this part

● NN provide very versatile solutions for generic searches
○ Supervised NN classifiers are able to find other signals
○ Unsupervised architectures provide at most an order of magnitude 

of degradation in sensitivity against supervised 
● Unsupervised methods are getting a lot of attention and interest in the 

community and can provide a BSM independent solution to search for 
NP

● Future work:
○ Extend to different kinematic and topological regimes
○ Further diversify to other BSM benchmarks
○ Switch to completely unsupervised statistical tests



               3.
[WIP] Low Level Data in Rare 
Phenomena Studies

 



Deep Learning is 
Versatile

So far we have used 
tabular data, but Neural 
Networks can intake 
many other data 
formats



Unstructured Data at 
the LHC

Before object 
reconstruction, all we 
have is low-level data 
from the detector

This allows us to study 
Jets in great detail

http://collider.physics.ox.ac.uk/detecting.html
https://cds.cern.ch/record/1309851/plots

http://collider.physics.ox.ac.uk/detecting.html
https://cds.cern.ch/record/1309851/plots


Jet Images

● Using the calorimeter deposits we can produce a Jet image

● Deep Learning architectures designed for Computer Vision can perform 

tasks over images

● 1511.05190, Jet-images — deep learning edition, used such 

techniques to discriminate between W bosons from QCD multijet 

processes

● 1612.01551, Deep learning in color, used similar approach to 

discriminate between Quark and Gluon initiated Jets



[WIP] Quenched Jet Images

● In the presence of the Quark-Gluon Plasma, the Jet is created and 

travels through a medium with which it interacts

● The modification of the Jet history due to this is known as Jet 

Quenching and it is still ill-understood

● Can we use similar ideas to further our understanding?

● In collaboration with Guilherme Milhano, Liliana Liliana Apolinário, Filipa 

Peres, Nuno Castro



[WIP] Quenched Jet Images
Deep Learning Methods for QGP studies

Receptive field moves along the picture => 

Position Invariant Features

Receptive field fixed for each region of the 

picture => Position Dependent Features

Convolutional Neural Networks Locally Connected Neural Networks



[WIP] Quenched Jet Images
Deep Learning Methods for QGP studies
CNN (receptive field composed of 3x3 filters with stride of 2)

Layer 1 Layer 2 Layer 3 Layer 4



[WIP] Quenched Jet Images
Deep Learning Methods for QGP studies
LCNN (receptive field composed of 3x3 filters with stride of 2)

Layer 1 Layer 2 Layer 3 Layer 4



“Conclusions” for this part

● Deep Learning architectures for Computer Vision are able to 

differentiate quenched from unquenched Jets

● However, the resulting discriminative power is mild and the output of 

the Neural Networks is not immediately related to mature Jet 

observables

● We are expanding the study to include other representations of Jets 

(namely through Lund Plane coordinates) and other architectures



               4.
Conclusions

 



Overarching conclusions

● Deep Learning provides paradigm-shifting possibilities to any 

data-heavy endeavour and it has finally reached HEP

● It will be at the core of generic searches for New Physics => Tool for 
discovery

● It allows us to use very low-level data, with minimal human bias, which 
can lead to a deeper understanding of phenomena => Tool for learning 
Physics



Thanks!
mcromao@lip.pt



               n+1.
Backups

 



Backups
AD outliers are data outliers



Backups
AD mus


