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1.
Introduction to Machine Learning




Machine
Learning is the
subfield of Al
that concerns
how a machine
can learn to
perform tasks

Artificial
Intelligence

Machine Learning




Machine Learning is a different
paradigm of computing: a program
that learns what it has to do
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Deep Learning is
a subclass of
Machine
Learning
algorithms that
train Neural
Networks to
perform tasks

Artificial
Intelligence

Machine Learning

Deep
Learning




Deep Learning
Neural Networks

Differentiable models that can be trained
with Stochastic Gradient Descent

Unmatched representational power and
are capable of feature abstraction: deeper
layers abstract more complex relations

Extremely versatile and can take in data of
many different shapes and formats

All state-of-the-art Machine Learning
applications are based on Deep Learning
and implement Neural Networks
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Deep Learning
Loss Function

Loss function is a differentiable measure on how the model is performing
the task and it works as the minimisation objective in terms of the NN
parameters

Common Loss functions:

= Regression: Mean Squared Error
N
L= 2y = NN(z))*

= (lassification: Cross-Entropy

LN K
L=— > i log NNi(X)
ik



In HEP we deal with huge amounts of data, comparable
only to the big 5 (Microsoft, Google, Amazon, Apple,
Facebook), and often come in many shapes

In this talk we will focus on two main types of data being
collected or simulated at collider experiments:

> High-level physical observables from reconstructed
objects
o Used in New Physics searches

Datain > Low-level detector information from calorimeter
HEP deposits and tracks
o (Carry no human bias but difficult to handle and use




2.
Deep Learning in Searches for
Generic New Physics




One of the main
goals of the LHC
is to look for
New Physics

Choose BSM signal you are
looking for

Study favourable kinematic
region and final state topology
Collect the data in such regime
Perform statistical tests on

the data on the hypothesis of
BSM being present
Profit (eventually)




Searches for New Physics

Operationally
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Searches for New Physics
Machine Learning

Using Monte-Carlo pseudo-data of
Background (SM) and Signal (BSM) we
can train a Classifier to isolate signal to
increase sensitivity

Either use a cut-off on the ML
classifier outputs or perform CLs

directly on its outputs

CMS 359" (13 TeV.

Photon identification BDT score



Transferability
of Deep Learning
Models in
Searches for
New Physics at
Colliders

MCR, N. F. Castro, R. Pedro,
T. Vale

Phys.Rev.D 101 (2020) 3,
035042 [1912.04220]

How does an NN classifier,
trained to separate a specific
signal from background,
behave when shown a new
signal?

How does this impact upper
limits on New Physics?

Focused on three classes of
signals:
FCNC
VLQ from SM production
VLQ from Heavy Gluon
production




Transferability of Deep Learning Models

Analogy
Jungle is the Background (SM What happens if instead of
events) and we want to find monkeys there is another animal in

monkeys (a BSM candidate)
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Would an NN still find the signal?



Transferability of Deep Learning Models
The Background

e A SM cocktail sample was produced in MadGraph5+Pythia8+Delphes
o 8M Z+], 3M ttbar, 1.5M per diboson sample
e Targeted processes with dilepton final state, at least one b, and HT >
500
e To guarantee statistics at the tails of the distributions we applied event
filter at parton level in pT slices
e The events are represented by variables from the reconstructed objects:
o (n, @, pT, m)for 5 leading jets and large-radius jets
o (n, @, pT) of the 2 leading electrons and muons
o Multiplicites, (ET, @) of the missing transverse energy (MET)



Transferability of Deep Learning Models
The Signals

e 7 samples of BSM signals over three classes
e FCNCinteraction in single top-quark production
e \/ector-Like T quarks produced via SM gluon with three different masses
o 1.0TeV
o 1.2TeV
o 1.4TeV
e \/ector-Like T quarks produced via BSM heavy (3TeV) bluon with three
different masses
o 1.0TeV
o 1.2TeV
o T1.4TeV



Transferability of Deep Learning Models
Methodology

e For each signal train a supervised DNN classifier

e Use each trained DNN to predict on every combination
signal-background

e Assess how discrimination deteriorates as we present a different signal

to each DNN through upper limits on expected cross-section



‘ Transferability of Deep Learning Models
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Transferability of Deep Learning Models
Upper Limits

HG 1.2 TeV - 0.022 ﬂ 022 09 HG 1.2 TeV - 0.8 1 1 ikl 1 il
£ £
© HG 1.4 TeV -SRELENEN PP 022 09 G HG 1.4 TeV - 0.8 1 1 il 1 1
IS [=
Hore LoTey ﬂ.ﬂ - o Sk o o °° ' o o
W/o HG 1.2 TeV - 0.022 ﬂ LR 0.22° 0.9 W/o HG 1.2 TeV - 0.8 1 0.9 1.1 1 1
W/0 HG 1.4 TeV -SRE[RNEPE ﬂ (OLN 0.22 0.9 W/0 HG 1.4 TeV ' 0.8 1 1 il 1 1
o > > > > > > . . . : . :
(o} > > > > > >
3 2 & 2 & 2 2 5 2 2 2 2 2 &
= S o~ < < o~ < g o ~ < o ~ <
— — — — — — — — — — — —
[G] Q
g 2 2 2 £ 2 g 2 2 2 £ g
g & 2 s £ £
R up s = =

Test O-exp Test

Oth



Could we not just
focus on the jungle?

Since we don't know
what BSM candidate is
realised in nature, it
seems it would be
better if we could
develop a way of
identifying any type of
non SM phenomena




Unsupervised Methods for New Physics Searches

e Growing interest in Unsupervised approaches to isolate New Physics
from SM Background
e Anomaly Detection ML algorithms are finding their way into HEP to
help this out
o 1805.02664, 1808.08992, 1811.10276, 1902.02634,

1903.02032, ...
e A comprehensive live review of ML in HEP curated by CERN's IML
WorkGroup: https:/github.com/iml-wg/HEPML-LivingReview



Finding New Physics
without learning
about it: Anomaly
Detection as a tool
for Searches at

Colliders

MCR, N. F. Castro, R. Pedro

2006.05432

We kept the same signals
o FCNC
o VLQ from SM production
o VLQ from Heavy Gluon
production
We compared four AD
algorithms
o Auto-Encoder
o Deep-5VDD
o Isolation Forest
o Histogram Based



Reconstruction

Encoder

Finding New Physics without learning about it

Auto

Inputs

X?




Finding New Physics without learning about it
Auto-Encoder

e The Network is trained by minimising the reconstruction error
| N
2
L= NZ |v; — AE(z;)]
1=1
e In principle, events that are easier to reconstruct are the most common
e Reconstruction error of an event can be a measure of how rare it is =>

BSM events should have higher reconstruction error



Finding New Physics without learning about it
Deep-SVDD

Inputs

Embedding




Finding New Physics without learning about it
Deep-SVDD

e Before any training, the NN is just a map from the input space to some
embedding space
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e Inthis space we can find a “centre of mass’, ¢, of the points



Finding New Physics without learning about it

Deep-SVDD

e The Network is trained by minimising the distance to

the centre of mass
! N
L= NZ ¢ — NN(z,)|”
1=1

e The bulk of the distribution will be easier to bring to
the centre, the rarer events will be further away
e The distance to c becomes then a natural

interpretation for outlyingness of an event
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Finding New Physics without learning about it
Isolation Forest

e Recursively partition the data with

1 ® ‘.---..: ':‘9 & .
random cuts " PRy SOV
. .o o.‘ Q?; 7: ..0
e These cuts can be represented as a . A s

tree

e Rare events will be easier to isolate
e Anomaly score given by the inverse T <\>
of how many nodes it took to / N

Difficult

ISO | ate To Isolate




Finding New Physics without learning about it

Common

/

Histogram Based

e (ompute histograms for all
variables

e Rare events will more often be in
bins of smaller height

e Anomaly score given by the sum of
the Log of the heights of each bin

an event occupies

x1



Train only on
Standard Model

This way we are learning
what a jungle looks like
and hopefully we will be
able to find any animal!

Are different algorithms
correlated?

Are they focusing on the
same characteristics?




Finding New Physics without learning about it
Sanitisting Features

e Usually, different events have different reconstructed objects =>
Accumulations of densities in missing values
e NNs do not like discontinuous inputs => This can hinder performance
e \We prepared a second set of features which attempts to mitigate this
Issue
o Demand a FatJet and drop all the remainder
o Keep only two leading leptons regardless of flavour



Finding New Physics without learning about it

Sanitisting Features
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Finding New Physics without learning about it

Results 1: When they see new jungle
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Finding New Physics without learning about it
Results 2: Are all AD algorithms created equally?
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Finding New Physics without learning about it
Results 3: Can they find animals?
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Finding New Physics without learning about it
Results 4: Can we search for New Physics?
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Conclusions for this part

e NN provide very versatile solutions for generic searches
o Supervised NN classifiers are able to find other signals
o Unsupervised architectures provide at most an order of magnitude
of degradation in sensitivity against supervised
e Unsupervised methods are getting a lot of attention and interest in the
community and can provide a BSM independent solution to search for
NP
e Future work:
o Extend to different kinematic and topological regimes
o Further diversify to other BSM benchmarks
o Switch to completely unsupervised statistical tests



3.
[WIP] Low Level Data in Rare
Phenomena Studies




Deep Learning is
Versatile

So far we have used
tabular data, but Neural
Networks can intake
many other data
formats

, cle ] ST
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This is read by a X Isso € lido por uma
neural network rede neural




Unstructured Data at
the LHC

Before object
reconstruction, all we
have is low-level data
from the detector

This allows us to study
Jets in great detall

http://collider.physics.ox.ac.uk/detecting.htm
https://cds.cern.ch/record/1309851/plots

ATLAS

169045
Event: 1914004
Date: 2010-11-12
Time: 04:11:44 CET

Tracks
B



http://collider.physics.ox.ac.uk/detecting.html
https://cds.cern.ch/record/1309851/plots

Jet Images

e Using the calorimeter deposits we can produce a Jet image

e Deep Learning architectures designed for Computer Vision can perform
tasks over images

e 1511.05190, Jet-images — deep learning edition, used such
techniques to discriminate between W bosons from QCD multijet
processes

e 1612.01551, Deep learning in color, used similar approach to

discriminate between Quark and Gluon initiated Jets



[WIP] Quenched Jet Images

e Inthe presence of the Quark-Gluon Plasma, the Jet is created and
travels through a medium with which it interacts

e The modification of the Jet history due to this is known as Jet
Quenching and it is still ill-understood

e (an we use similarideas to further our understanding?

e In collaboration with Guilherme Milhano, Liliana Liliana Apolinario, Filipa

Peres, Nuno Castro



[WIP] Quenched Jet Images
Deep Learning Methods for QGP studies

Convolutional Neural Networks Locally Connected Neural Networks

Receptive field moves along the picture => Receptive field fixed for each region of the

Position Invariant Features picture => Position Dependent Features




Layer (type) Output Shape Param #

input_1 (InputLayer) [(None, 33, 33, 2)] 0
batch_normalization (BatchNo (None, 33, 33, 2) 8
conv2d (Conv2D) (None, 16, 16, 128) 2432
[WIP] Quenched Jet Images g e B AT —
spatial _dropout2d (SpatialDr (None, 16, 16, 128) 0
D ee Learn i n IVl eth O d S fo r Q G P Stu d i es batch_normalization 1 (Batch (None, 16, 16, 128) 512
p g conv2d_1 (Conv2D) (None, 7, 7, 256) 295168
leaky re lu 1 (LeakyRelU) (None, 7, 7, 256) 0
CNN (receptive field composed of 3x3 filters with stride of 2) spatial dropoutad 1 (spatial (lone, 7,7, 358)
batch_normalization 2 (Batch (None, 7, 7, 256) 1024
conv2d 2 (Conv2D) (None, 3, 3, 384) 885120
La\/er 1 La\/er 2 La\/er 3 La\/er 4 Teaky re lu 2 (LeakyReLU)  (None, 3, 3, 384) )
spatial _dropout2d 2 (Spatial (None, 3, 3, 384) 0
batch_normalization 3 (Batch (None, 3, 3, 384) 1536
conv2d_3 (Conv2D) (None, 1, 1, 512) 1769984
leaky re lu 3 (LeakyRelU) (None, 1, 1, 512) 0
spatial_dropout2d 3 (Spatial (None, 1, 1, 512)  ©
batch_normalization 4 (Batch (None, 1, 1, 512) 2048
flatten (Flatten) (None, 512) 0

dropout (Dropout)  (None, 512)

dense (Dense) (None, 1) 513

Total params: 2,958,345
Trainable params: 2,955,781
Non-trainable params: 2,564




Layer (type) Output Shape Param #

input_1 (InputLayer) [(None, 33, 33, 2)] 0

batch_normalization (BatchNo (None, 33, 33, 2) 8

locally connected2d (Locally (None, 16, 16, 128) 622592
WIP] Quenched Jet Images oy s o

spatial_dropout2d (SpatialDr (None, 16, 16, 128)

Deep Learnlng MEthOdS for QGP StUdIES batchj'n‘a"r.‘n'a‘u{at‘ia‘n‘1'(aa't'c'ﬁ'<‘~a'né;‘i‘s,. 16128)512

Tocally connected2d 1 (Local (None, 7, 7, 256) 714463232

leak
LCNN (receptive field composed of 3x3 filters with stride of 2) LT Rl D v ey

batch_normalization 2 (Batch (None, 7, 7, 256) 1024
locally connected2d 2 (Local (None, 3, 3, 384) 7966080

La\/er 2 La\/er 3 La\/er 4 Teaky re_lu_2 (LeakyReLU)  (None, 3, 3, 384) [
spatial dropout2d 2 (Spatial (None, 3, 3, 384) )
batch_normalization 3 (Batch (None, 3, 3, 384) 1536
locally connected2d 3 (Local (None, 1, 1, 512) 1769984
leaky re_lu_3 (LeakyRelU) (None, 1, 1, 512) )
spatial_dropout2d 3 (Spatial (None, 1, 1, 512) 0
batch_normalization 4 (Batch (None, 1, 1, 512) 2048
flatten (Flatten) (None, 512) 0
dropout (Dropout) (None, 512) 0
dense (Dense) (None, 1) 513

Total params: 24,827,529
Trainable params: 24,824,965
Non-trainable params: 2,564




“Conclusions” for this part

Deep Learning architectures for Computer Vision are able to
differentiate quenched from unquenched Jets

However, the resulting discriminative power is mild and the output of
the Neural Networks is not immediately related to mature Jet
observables

We are expanding the study to include other representations of Jets

(namely through Lund Plane coordinates) and other architectures



L.
Conclusions




Overarching conclusions

Deep Learning provides paradigm-shifting possibilities to any
data-heavy endeavour and it has finally reached HEP

It will be at the core of generic searches for New Physics => Tool for

discovery
It allows us to use very low-level data, with minimal human bias, which

can lead to a deeper understanding of phenomena => Tool for learning
Physics
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Backups




Backups
AD outliers are data outliers
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Backups
AD mus

Model Benchmark Signal
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