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Online vs. Offline Patterns
Emergency Now-casting
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Agenda Setting
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DATA

Google Trends

SNS24

Twitter

ER acceptance /times
SPMS e-prescriptions

Media records
Twitter
Facebook
Parliament data

Large scale surveys
Behavioral experiments
Twitter

Facebook
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TOOLS

Math Modelling
ML
Epidemiology

NLP

Networks

Math Modelling
Complex Systems
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Math Modelling
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These problems—and a wide range of similar problems in the bio- i H Gyl =% & .§
logical, medical, psychological, economic, and political sciences—are just ..:i,‘.;i----.-.._' e B l « * 3
too complicated to yield to the old nineteenth-century techniques which LT stiren, M 20 G &
were so dramatically successful on 1wo-, three-, or four-variable prob- SR TR SR T AN SR,
lems of simplicity. These new problems, moreover, cannot be handled ; * P, ot
with the statistical techniques so effective in describing average behavior o S SOCIAL e
in_problems of disorganized complexity. Laran O JET

These new problems, and the future of the world depends on many LR PHY S | C S. : i.
of them, requires science to make a third great advance, an advance that . ‘ &, .
must be even greater than the nineteenth-century conquest of prob- g AW HOW GOOD d sy
lems of simplicity or the twentieth-century victory over problems of dis- it
organized complexity. Science must, over the next 50 years, learn to deal 3 IDEAS SPREAD— 5.

with these problems ot organized complexity. -
THE LESSONS FROM" |

Warren Weaver, 1947 i
..A NEW SCIENCE

Alex Pentland, 2014
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MACROSCOPE

Individual behaviour

Large scale
- In context

Fast / real-time

Not self-reported
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Influenza estimate ® Google Flu Trends estimate ® United States data
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United States: Influenza-like illness (ILI) data provided publicly by the U.5. Centers for Disease Control.

Ginsberg, Jeremy, et al. "Detecting influenza epidemics using search engine query data“
Nature 457.7232 (2009)

Google Flu Trends (never available in Portugal)
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FEVER PEAKS

A comparison of three different methods of
measuring the proportion of the US population
with an influenza-like illness.

= Google Flu Trends
= CDC data

== Flu Near You
e ”

Google's algorithms
overestimated peak
flu levels this year

Estimated % of US population with influenza-like illness

OIIIIIIIIIIIlIlIII(NIIIIIII
Jan Jan Jan

2011» 2012» 2013»

Declan Butler, “When Google got it wrong”
Nature 494, 155-156 (2013)

Ehe New Nork Eimes

How Data Failed Us in Calling an
Election

By Steve Lohr and Natasha Singer, 2016

BIG DATA

HUBRIS
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—
- Individual behaviour - Profiling / Targeting
- Large scale - Monetize / Incentives
- In context - Proxies / Large impact
- Fast / real-time - Faster / not adapted
- Not self-reported - Illusion of knowledge

- Human Biases - Amplification / Manipulation
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FAKE NEWS: fabricated information, with the intent to mislead

FALSE NEWS: information that was not deliberately created, often
being lingering misconceptions, stemming from poor reporting,
misinterpretations, or even satirical pieces

\ }
|

FAKE NEWS

Fact-checking sites to decide
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1. NOT NEW

Coast-to-coast /e

manhunt for &1 A Space creature survived
P cave boy 'Z":"%J NE w UFO crash i in Arkansas!
captured o ™
just weeks ago! ’

S EsC

lI[l[]] [ te's 2-ect-tll and VERY DANGEROUS, wor plice |
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2. SERIOUS CONSEQUENCES — PERFECT STORM

EIEME |ndia lynchings: WhatsApp sets new rules
NIRAWAY after mob killings 20wy

- Fast
TNDU ey 4688.12 /14692.8
13:34 14567. 1 14720.34 14554 .29 14567 .17 M
INOY Todex I W ACHGRE T W ET rtraday Char - Long- reachlng
[E====1 | O4/23/2GI3 0 S/23/3013 M 09-30 N 1418 Wirsse L) '

M ar 4"‘”"r"-’~-r-k o ol e 8
B M S, et Aatre T 2 '
~ f oy

Ao 4
'.“T\)‘J Wl

- Magnify

4
AN
4

Ap The Associated Press © A+ W Follow

- Create new incentives

Breaking: Two Explosions in the White
House and Barack Obama is injured
& Aeply T3 Aetweer W Fovonte eee Mo

, - Monetize biases
i s PO/ R

- See / alter behaviour
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3. CURRENT APPROACHES

= Tackling online disinformation

* MULTIDISCIPLINARITY

e TECHNOLOGY

* PLATFORM REGULATION
 EDUCATION

HUMAN BEHAVIOUR
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S‘ﬁmmm “Falsehood diffused significantly
A farther, faster, deeper, and more
AVAAAS broadly than the truth (...)
HOW LIES

SPR[AD Robots accelerated the spread of

true and false news at the same

Onsomahnedm
fale news beats the truth rate, implying that false news

-

pp. 1094 & 1146

spreads more than the truth
because humans, not robots, are
more likely to spread it.”

S. Vosoughi et al., 2018
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FAKE NEWS VI
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Fig. 2. Complementary cumulative distribution functions (CCDFs) of
true and false rumor cascades. (A) Depth. (B) Size. (C) Maximum
breadth. (D) Structural virality. (E and F) The number of minutes it
takes for true and false rumor cascades to reach any (E) depth and (F)
number of unique Twitter users. (G) The number of unique Twitter

Surprise
Disgust
Fear

Anger
Sadness
Anticipation
Joy

Trust

.05

ol sl 2 2D
% User Responses

Fig. 4. (D) The emotional content of replies to
true (green) and false (red) rumor tweets
across seven dimensions categorized by the

NRC.
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Spread of Fake News is (implies) cognitive biases

100 ,3\ /}8\

How much you think you know
[} E=3 [=2] [es]
o o o o

o

0 20 40 60 80 100
How much you know

We can use them as a model system to study human behavior
in context
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Humans have a preference for sharing fake news

1. We cannot fully tackle the 1. The social networks

problem unless we amplified the problem
understand the human side

2. The problem will allow us to 2. The social networks will
understand the human side offer a way to study it
\ J

|
FAKE NEWS: AN ELEGANT RESOURCE FOR SOCIAL SCIENCES
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Pathogens Hosts Environment
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| X
DATASET1 /3\ ﬂg‘\ /18\ ' ' DATASET2

FAKE AND REAL NEWS INDIVIDUAL SUSCEPTIBILITIES
RECOGNIZED FACT-CHECKING
SITES PSYCHOLOGY OF HUMAN BEHAVIOUR

I COGNITIVE BIASES
2 S‘Dpes POLITIFACT DISEASE VALIDATED TESTS
8 T —— T DYNAMICS EXTENSIVE SURVEY
o MODELS
< DATASET3

i ENVIRONMENT AND HISTORY

/ CONNECTIONS

i y PROFILES

TWITER SHARING HISTORY
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1.Cognitive biases & confidence to knowledge ratios, good predictors of FN sharing
2.Position on networks should be good predictors of FN sharing

3.Past history should offer good indicators of future FN spreading

INDIVIDUAL

® o
D D 1 SUSCEPTIBILITIES

1 — Overconfident (+
unknowledgeable) individuals
more likely to share FN

4 — FN that spread slower
might activate more complex
cognitive processes

DISEASE
DYNAMICS
MODELS

ENVIRONMENT AND HISTORY

[ ]

|
./ 2 — Less diverse social networks more likely to share FN
?

3 — Sharing in the past should lead to sharing in the future
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40 years of PTPARL data
Political Decisions Media records NLP
Gender Differences Twitter Networks
Agenda Setting Facebook Math Modelling
Voting vs. Discourse Parliament data Complex Systems
o Text documents
..O.....

— Debates ®

o« HTML documents / Parliament Open Data ....'...0.0.

—  MP biographical data S seonee 0000000
MTYYYIYY 230 ce0sccee
— Initiatives (votes) eecossse

o CSV files

Manuel Pita @ U Luséfona

- MP data (first five legislatures)
Nuno Mamede@ IST
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PATHOGEN: TEXT MINING I

40 years of PTPARL data

Strip HTML

Clean headers
e Getfirstline
o Fuzzy matching / Regular expressions
o Check logs, adjust, repeat

Detect session end

Tag utterances
o lIterate instances of 'Speaker : - Utterance'
o Add <utterance> tags
o Track utterances spanning multiple pages
Identify President utterances

Assign Orador
e Only up to 10th legislature
o For each Orador, go back to when president
granted the floor and score putative Orador

Assign speaker
o Fuzzy matching against database
o Skip president utterances

I SERIE — NUMERO 65

partido, re ‘erindo-se também ao PRD e tentando pd-
-lo a ridiculo, que nem a nog¢do do ridiculo lhe faze-
mos, Sr. Ministro de Estado, nem usamos da sua lin-
guagem trauliteira.

Vozes do PSD: — Nido apoiado!

O Oradcr: — Compreendemos que a vossa queda
eminente vos coloca perante esse desespero, mas
espanta-no: a sua ma-criagdo, Sr. Ministro.

Vozes do PSD: -— Niao apoiado!

O Orador: — Queremos apenas que isso fique regis-
tado e mais nada.

Aplausos do MDP/CDE, do PS, do PRD e do PCP.

O Sr. Presidente: — O Sr. Ministro de Estado pre-
tende dar explicagdo?

Vozes d¢ PSD: -— Nio lhes dé confianca!

O Sr. Ministro de Estado: — Nido, Sr. Presidente.

O Sr. Presidente: — O Sr. Deputado Magalhdes
Mota pediu a palavra para defesa da honra da sua ban-
cada?

O Sr. Magalhiies Mota (PRD): — Ndo, Sr. Presi-
dente. Ndo vou invocar a figura regimental de defesa
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/E\\ ,3\ /3\ Using Intergenerational Justice (1))

as a case-study

environment - 1422 %
debt - 21.15%

education - 1462 %

heaith - 17.64 %
social_security - 21.12 %
others - 11.25 %

Lilia Perfeito, Paulo Almeida
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/3\ ,3\ /3\ Using Intergenerational Justice (1))

as a case-study

N environment - 1422 %

BN environment - 81 95 %
. debt-2115%

BN debt-148 %
B education - 12.72 %

BN environment - 22 08 %

BN debt-19.26%

B education - 13.95 %

BN health- 13.68 %
social_security - 26.11 %

B others-4.92 %

B education - 14.62 %

BN health - 17.64 % BN health - 0.89 %

social_security - 21.12 %

= others - 11.25 % social_security - 1.48 %

Bmm others-148%

Parliamentary Traditional Media Twitter
debates

2008 - date Lilia Perfeito, Paulo Almeida
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Parliament

ENVIRONMENT DEBT
With minimum at(2012, 2) With minimum at(2012, 3)
R2 of 0.47 A2 of 0.66
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7.1 P08 Y 010.2) @021 (123 (2015, 2) 2017.1) (2207, 1 008,3) @010.2) ML YL 2913, 3 2018, 2) 2017, 1
year tnmester year trimaester
~ ENVIRONMENT _DEBT
With minimum ati2013, 3} With minimum ati2013, 2}
R2 of 0.5%6 RZ of 0.61
£ aink .
;; o a & . ~ = "
. i ___'—.v‘-‘——ﬁ___ -
a ne - X = . T~
o L J Y ™ -
‘-5: . ’ . / 2:' o ’ ‘ a :
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. . ' m ’ '
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yoartnmester year trimester

Joao Franco
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Pathogens Hosts Environment
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Gender Differences Twitter Networks
Agenda Setting Facebook Math Modelling

Voting vs. Discourse Parliament data Complex Systems
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Fake news spreading as a
deviation from “rationality”

1. Over confident
2. Confirmatory Tendencies
3. Echo chambers

4. Environment
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How much you think you know
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How much you know
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Dunning- Kruger Effect Unskilled and unware of it

N\.

Win

“...and will to the best of my ability, which is terrific
ability, by the way. Everyone agrees,
I have fantastic ability. So there’s no problem
with my ability, believe me...."”
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1.0}

0.8

0.6 -

0.4+

k 'don't know' answers

0.2 -

0.0 -

0.0 0.2 0.4 0.6 0.8 1.0

k correct answers
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k 'don't know' answers

0.0 0.2 0.4 0.6 0.8 1.0

k correct answers
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k 'don't know' answers

0.0 0.2 0.4 0.6 0.8 1.0

k correct answers
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Dataset from “Europeans, Science and Technology” Eurobarometer

Years: 1989, 1992, 2001, 2002, 2005

34 European Countries
1989, 1992: EU12
2001: EU15
2002: CY, CZ, H, ES, LV, LT, MA, PO, SL, SV, BL, RO, TK
2005: all above plus IS, CR, CH, NO

N=84469

Knowledge

Attitudes

Frederico Francisco
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Do wrong answers scale linearly?

1.0 1.0
os_ i
SN 08
L \
\
” \
§ 0.6 \\ £
.0 - ~ [
% 5 \ 2 06
hd w
.g o‘ \ g
=] .. \ -
: | AN 3
> -~ \ — =
5 04l *e S
S N £ 04
X r \~\_. x |
0.2 02l
0.0 ool
b 1 1 I 1 1 I 1 I 1 1 I 1 1 I 1 I 1 I I 1 | 1
0.0 0.2 0.4 0.6 0.8 1.0 . ‘ :

1 1 L 1 1 1 L 1 L L 1
0.0 0.2 0.4 0.6 0.8 1.0

k correct answers
k correct answers

More wrong answers at intermediate k levels

Frederico Francisco
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Biases in Decision-Making

The human understanding when it has once adopted an opinion ... draws all
things else to support and agree with it. And though there be a greater number
and weight of instances to be found on the other side, yet these it either neglects

and despises ... in order that by this great and pernicious predetermination the
authority of its former conclusions may remain inviolate.

Francis Bacon, Novum Organum, 1620

CHAINSAWSUIT.COM
Ve hearc! the - jac_kpof
rhetoric rom both ||| ¢ vic Emem \
Sidqs'" hme' +o do Found 80,000 results.
My owhN research on

el Literally the first link that
the real truth

agrees with what you
\ already believe
Completely supports your viewpaint

without challenging it in any way
ﬁ Another link

SR RERE EHRIRH I
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Fake News Humans
} |
Pathogens Hosts

Cognitive Biases
Attitudes Towards Science

Tracking Anxiety

Networks

]

Environment

yiomawe.
|eannaloayl

Large scale surveys
Behavioral experiments
Twitter

Facebook

Networks

Math Modelling
Psychology
Information
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(country, season)

Modified SIR: identify |

’ \ N
1 1] 1\
' 1 B X '
: EISNALI ! .- historical onsets [ > f
................... 24 : o
0002 L o0

Identified Onset: target

function that

determines the b
beginning of the flu >
season V

B =7+ T

to
Susceptible Infectious Recovered
@ — _BSI | - Infected population
dt N A
al = pST _ ~I  R-Recovered population ﬁ(t) =7y -+
d% N - contact rate 1 -+ exp — (t — t())
P vI Y - recovery rate

N - population size Miguel Won
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DATA SOURCES

EISN-ILI

Saude 24
(Portugal only)

}
>_

METHOD STEPS

B . Modified SIR: identify A
D historical onsets >

. Identified Onset: target
function that
determines the N
beginning of the flu i >

season %/«/

— A
'B(t) =R 1+exp—(t—to)

’ Predict the flu season
onset

iterative search for /"'/ L
best feature \%
combination A |

Minimise RMS (10, PO)
k-fold validation

OUTPUTS

(country, season)

real-time Predicted

Onset

ENVIRONMENT: ONLINE DATA 1lII

Miguel Won
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[— IO — PO --- Alert Week]

E ) ] , _ I
! Ireland | -3wk | ltowk | {-9wk | {-6wk | NA
e | = ;(1) . " s }NA I {-4wk I 13wk 1 Z3wk I {-7wk I NA

|
0 . || | |
I J 1 I { T T
Italy | {-6wk | {-Twk | {=Twk | {=7Twk | | —4wk
,'; ' }}, ‘; ,'l g2 ,NA ,' Ly i I {-6wk I {-7wk | {-6wk || -8wk I {-awk
[ nn n
0! Li L3 - L \ 1
G T T 1 T F T I
1 | | |
» g orwat It —1wk | | —4wk 11 —2wk | 1=Twk INA
l! e I': '! g t 'l g n }%_gm: -2t i | +0wk ||k I+1wk I} 2wk I NA
l s | s s
i 0t H] L 1l | | ¢
' H . . . .
. f T M ] I
:_ Portug | —6w | —2w i—w | {—4wk | NA
'l Fon ' ﬁ i (3, ,'m ol ’ 2w | 2w I¥—2k | NA
' i
oL | ¥ 4 —— g | | — | — 4
7/10 1/11 7/11 1/12 7/12 1/13 7113 1/14 7114 1/15 1/10 7110 111 7111 1112 7112 1/13 7113 1/14 7114 1/15
Month/Yeal Month/Year

IO matches or anticipates current alerts in all cases studied
(by > 2 weeks in 90% of the cases)

PO matches or anticipates current alerts in all but three cases

(by > 2 weeks in 70% of the cases)
Miguel Won
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What about pandemic settings?

2009 HIN1 influenza pandemic 2020 SARS-CoV-2 pandemic

FLeo L 30000
12000
L1ao
4000001
10000 4 L 25000
F120
8000 100 300000 [20000
@ @
= =
=] =]
: 6000 B £
3 s 15000 £
S 2000001 i
leo = s
4000+ L 10000
Lao
1000001
2000
r2o I s000
ol Lo 0
2009-02-08 2009-03-29 2009-05-24 2009-07-19 2009-09-13 2008-11-08 2010-01-03 2010-0221 2019-12-24 2020-01-21 2020-02-17 2020-03-15 2020-04-12 2020-05-09 2020-06.06 2020-07-03 2020-07-30 2020-08-27

Time (weekly) Time (weekly)
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Can we distinguish between different drivers of online behaviour?

ONLINE OFFLINE

- Searches on Google (GT) - # of flu cases (WHO)
- Searches on Wikipedia (Wiki) - Media reports (NYT)
- Twitter posts - Surveys (Anxiety)

Do they have diiferent profiles?

00000

400000 25000

ooooo

2 8
nnnnnnn
2

000000

Claudio Vieira, Sara Mesquita
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influenza a I\ ——
I"f_: hand sanitizer o N e G
guillain-barre &5 e s
S avian influenza — i,
flu contagious g T
_E flu how long AL e N
flu safety A " N,
hilnl S
vaccine e S
flu vaccine A ™ s
flu shot S S
antiviral N
flu prevention /\
swine flu deaths P
tamiflu A\
swine flu symtpoms ___ A
flu medicine I\
flu treatment V-
flu test —
flu symptoms P
outbreak il S
flu transmission )
influensa — N
flu cure TN
Influenza (-vaccine) D
cdc 7
flue Y
swine flu Fy
flu news D
flu (-vaccine) N
flu precautions .
relenza A
n95 mask AN
epidemic N
oseltamivir o, TR
zanamivir \
surgical mask ki
spanish flu s
flu 1918 7y e
pandemic 3,
mexican flu ¥ o B
contagious e ——— s
fever —_— e ~————————— —
sick [CENEE SESERRND e, St I S
| disinfectant A T A S — e
who ————— e ————— e N —————
sore throat W‘W
runny nose S e ¥ T o e e e et e

' ' ' ' '

1000 800 600 400 200

Claudio Vieira, Sara Mesquita
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1.00

0‘75 ?

0.50
0.25

0
0.00

100 A
75 1
50 1
25

v
Q
(]
S
=
=
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z
c
o T T T T o
E ©
% 100 g
>
75 1 (=}
& Y _0.25
§ 50 A 2
o 25 4 g
0 - - - - E 0.75 +
100 A -
g 0.50
75 1 5
50 S 025
[ =4
25 1 2 0.00
©
0 v v v v r T [7]
Apr Jul Oct Jan Apr Jul £-0.25 . : .
2010 o Cluster 1 Cluster 2 Cluster 3

=2 Cluster 1 search trends are more correlated with flu infections

=2 Cluster 2 search trends are more correlated with flu-related news

Claudio Vieira, Sara Mesquita
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Standardized flu cases
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C - Linear Regression

— rel cases
prechction with ali data
s preciction with cluster 1

9N

2011
1.0 A - Linear Regression 1.0 B - Random Forest
0.8 + } 0.8 }
~ 0.6 ~ 0.6
¢ <
“0.4 0.4
0.2 0.2
0£ . , . O_EI , . ,
Il terms Cluster 1 Cluster 2 Cluster 3 | terms Cluster 1 Cluster 2 Cluster 3

Sara Mesquita, Lilia Perfeito
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ENVIRONMENT: ONLINE DATA X

FEVER PEAKS

A comparison of three different methods of
measuring the proportion of the US population
with an influenza-like illness.
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Google's algorithms
overestimated peak
flu levels this year
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Declan Butler, “When Google got it wrong”
Nature 494, 155-156 (2013)
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How Data Failed Us in Calling an
Election

By Steve Lohr and Natasha Singer, 2016
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1.Cognitive biases & confidence to knowledge ratios, good predictors of FN sharing
2.Position on networks should be good predictors of FN sharing

3.Past history should offer good indicators of future FN spreading

INDIVIDUAL

® o
D D 1 SUSCEPTIBILITIES

1 — Overconfident (+
unknowledgeable) individuals
more likely to share FN

4 — FN that spread slower
might activate more complex
cognitive processes

DISEASE
DYNAMICS
MODELS

ENVIRONMENT AND HISTORY

[ ]

|
./ 2 — Less diverse social networks more likely to share FN
?

3 — Sharing in the past should lead to sharing in the future
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URGENT INSIGHTS TO RECLAIM THE DIGITAL REVOLUTION

BIG DATA CAN HELP BETTER UNDERSTAND HUMAN BEHAVIOUR
A SOUND AND ETHICAL MACROSCOPE

EUROPE
DRIVEN
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URGENT INSIGHTS TO RECLAIM THE DIGITAL REVOLUTION

Data limits/ controls
What to do with the results
Improve privacy protection

Raise awareness

Change the narrative
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These problems—and a wide range of similar problems in the bio-
logical, medical, psychological, economic, and political sciences—are just
too complicated to yield to the old nineteenth-century techniques which
were so dramatically successful on two-, three-, or four-variable prob-
lems of simplicity. These new problems, moreover, cannot be handled
with the statistical techniques so effective in describing average behavior
in problems of disorganized complexity.

These new problems, and the future of the world depends on many
of them, requires science to make a third great advance, an advance that
must be even greater than the nineteenth-century conquest of prob-
lems of simplicity or the twentieth-century victory over problems of dis-
organized complexity. Science must, over the next 50 years, learn to deal

with these problems of organized complexity. Warren Weaver. 1947

Is there any promise on the horizon that this new advance can really
be accomplished?! There is much general evidence, and there are two
recent instances of especially promising evidence

The first piece of evidence is the wartime development of new types
of electronic computing devices. These devices are, in flexibility and
capacity, more like a human brain than like the traditional mechanical
computing device of the past. ’ |

The second of the wartime advances is the “mixed-team” approach
of operations analysis.
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