Heavy lons with the ATLAS Experiment

https://www.youtube.com/watch?v=g4n-VGTus_o

Helena Santos LIP, FCUL

In Memoriam Stephanie Zimmermann

LIP 2020, 11 November, Coimbra

- Introduction to the HI physics
- Global observables
- Electroweak probes
- Hard probes
- An 80 years old prediction
- Summary

Goal is to understand QCD in extreme conditions of temperature and density \rightarrow study distinct phases of matter: hadronic vs. partonic deconfined system (a plasma of quarks and gluons - the QGP)

Time evolution of heavy-ion (HI) collisions: QGP state

Hadronic state

Initial state

Time evolution of heavy-ion (HI) collisions: QGP state

Hadronic state

Initial state

How to understand the different stages?

Heavy Ion Collisions

How to understand the different stages?

Use probes emitted during these stages:

- Initial conditions, collisions geometry: electroweak bosons; particle correlations, collective behaviour
- QGP and hadronic state: hadrons, jets, quarkonia

The ATLAS Detector

An excellent detector for the LHC Heavy-Ion program, with enourmous trigger capabilities

Nuon Detectors Tile Calorimeter Liquid Argon Calorimeter

Full azimuthal coverage

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Collisions Centrality

Dominik Derendarz, HardProbes 2020

Flow

Anisotropic collective motion is described by a Fourier expansion of particle

distribution in azimuthal angle $\boldsymbol{\varphi}$

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\phi - \Phi_n)$$

High order coefficients are associated with fluctuations of nucleon positions in the

Phys. Rev. C 101 (2020) 024906

Xe is smaller than Pb

→ larger EbyE fluctuations → larger eccentricities

 \rightarrow larger viscous effects (1711.08499)

Phys. Rev. C 101 (2020) 024906

Phys. Rev. C 101 (2020) 024906

Phys. Rev. C 101 (2020) 024906

• Significant harmonic (v_2-v_4) observed in Pb+Pb collisions reflecting

the nuclear overlap and fluctuations of the initial nucleon-nucleon positions.

- The long range "ridge" and "cone" structures in two-particle correlation at low p_T can be explained by flow effects.
- Hydrodynamics (also) describes flow in Xe+Xe collisions.

Electroweak probes

W/Z, photons, are not supposed to interact with QGP.

They are produced in HI collisions before QGP is formed:

- Production mechanisms sensitive to nuclear PDFs initial stages.
- Can be used to check models of collision geometry (Glauber). Their production is expected to be proportional to the nuclear overlap.
- Provide calibration for jet energy loss in the QGP (photon-jet, Z-jet).

Nuclear Modification Factor - *R***AA**

17

• Nuclear thickness function accounts for the nuclear orverlap.

- Nuclear modification factor quantifies the change of yields, relatively to the production in vacuum.
- Any deviation from unity points to suppression or enhancement of the **Pb+Pb yields.**

Electroweak probes in Pb+Pb collisions – Z¹⁸

Phys. Lett. B 802 (2020) 135262

Normalized Z boson yield as a function of rapidity

- (free-nucleon) CT14 NLO takes into account that Z production Xsection is higher in *nn* and *pn* collisions than in *pp* collisions.
- nuclear NLO PDFs EPPS16 and nCTEQ15 underestimate even more Z production by $1-3\sigma$.
- Difference between data and theory increases towards forward rapidity.

Electroweak probes in Pb+Pb collisions – Z¹⁹

Phys. Lett. B 802 (2020) 135262

$$R_{\rm AA}(y) = \frac{1}{\langle T_{\rm AA} \rangle N_{\rm evt}} \frac{{\rm d}N_{\rm Pb+Pb}^Z/{\rm d}y}{{\rm d}\sigma_{pp}^Z/{\rm d}y},$$

R^Z_{AA} is expected to
be greater than unity
by about 2.5% due to
isospin effect.

• *R*_{AA} is consistent with unity and agrees with CT14 NLO that accounts for Pb isospin.

Electroweak probes in Pb+Pb collisions – Z²⁰

Phys. Lett. B 802 (2020) 135262

$$R_{\rm AA}(y) = \frac{1}{\langle T_{\rm AA} \rangle N_{\rm evt}} \frac{{\rm d}N_{\rm Pb+Pb}^Z/{\rm d}y}{{\rm d}\sigma_{pp}^Z/{\rm d}y},$$

R^Z_{AA} is expected to
be greater than unity
by about 2.5% due to
isospin effect.

• *R*_{AA} is consistent with unity, independently on collisions centrality, and agrees with CT14 NLO that accounts for Pb isospin.

Electroweak probes in Pb+Pb collisions - W[±] ²¹

Eur. Phys. J. C 79 (2019) 935

• W⁺ $\rightarrow \mu^+ \nu$ yields are systematically ~10% larger than W⁻ $\rightarrow \mu^- \nu$ yields.

• Theory understimates W boson yields in peripheral collisions.

Electroweak probes in Pb+Pb collisions - W[±] ²²

Eur. Phys. J. C 79 (2019) 935

- W⁺ $\rightarrow \mu^+ \nu$ yields are systematically ~10% larger than W⁻ $\rightarrow \mu^- \nu$ yields.
- Theory understimates W boson yields in peripheral collisions.
- Good agreement with predictions, both that ascribe free-nucleon PDF and nPDF, for $|\eta_{\mu}| < 1.4$. Three sigma at forward. All PDFs account for isospin. Asymmetry changes sign for $|\eta| > 2$.

Quarkonia

Quarkonia suppression is predicted by lattice QCD calculations

Prompt and Non-prompt Charmonia in Pb+Pb²⁴

Dimuon invariant mass

Dimuon pseudo-proper time

Prompt J/y: direct production; feed-down from excited states. Modified by colour screening and regeneration in the QGP. u+ Non-prompt J/ψ : decays from B-hadrons **Energy loss of the b-quarks in the QGP.**

$J/\psi R_{AA}$ as a function of N_{part}

Strong centrality dependence for both **prompt** and **non-prompt** J/ψ , with similar suppression pattern.

$\psi(2S)$ to J/ ψ as a function of N_{part}

Eur. Phys. J. C 78 (2018) 762

• Prompt $\psi(2S)$ to J/ ψ ratio increases in central collisions, supporting the hypothesis of $\psi(2S)$ being produced by regeneration. More data is needed.

• Non-prompt $\psi(2S)$ to J/ ψ ratio is consistent with unity, suggesting that both mesons originate from b-quarks hadronising outside the QGP.

Prompt J/ ψ *R*_{AA} as a function of *p*_T

Eur. Phys. J. C 78 (2018) 762

Data at high $p_{\rm T}$ well described by color screening and energy loss scenarios, but they miss low $p_{\rm T}$. Different models on color screening and energy loss agree at low $p_{\rm T}$, but fail at high $p_{\rm T}$.

Prompt $\psi(2S)$ to J/ ψ as a function of N_{part}

Both models foresee the decrease in the double ratio, but fail in describing simultaneously all centralities.

Messages from Quarkonia

29

- \cdot Strong centrality dependence, and with similar suppression, for both prompt and non-prompt J/ $\psi.$
- Modest dependence on |y| (in backup). Different p_T dependence.
- Data at high $p_{\rm T}$ well described by color screening and energy loss models. But these miss low $p_{\rm T}$.
- Indications of prompt $\psi(2S)$ regeneration in central collisions.
- Non-prompt $\psi(2S)$ to J/ ψ ratio is consistent with unity.

Jets in HI collisions

First insight of jets produced at LHC indicated a large dijet asymmetry

30

Jets in HI collisions

First insight of jets produced at LHC indicated a large dijet asymmetry

ATLAS-CONF-2020-017

- The dijet momentum-balance in peripheral collisions is well compatible with pp collisions.
- Imbalance increases with increasing centrality.

Jets in HI collisions

First insight of jets produced at LHC indicated a large dijet asymmetry

- The momentum-balance in peripheral collisions is well compatible with pp collisions.
- Imbalance increases with increasing centrality.
- The imbalance is weaker with increasing leading jet $p_{\rm T}$.

32

 $x_{\rm J} = p_{\rm T2}^{\prime} / p_{\rm T1}^{\prime}$

Inclusive jet production in Pb+Pb

- Nuclear modification factor quantifies the change of yields, w.r.t. the production in vacuum.
- Any deviation from unity indicates suppression or enhancement of yields.

33

Jets are suppressed by a factor of two in central Pb+Pb collisions with clear dependence on transverse momentum, p_{T} .

Path length dependence of quenching ³⁴

Unequal path lengths of the showers in the medium

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{n} v_n \cos(n(\phi - \Psi_n)),$$

ATLAS-CONF-2020-019

Path length dependence of quenching

ATLAS-CONF-2020-019

35

 $2 |\Psi_2 - \phi|$

Δφ Angular distribution of jets with respect to Ψ_2 Δφ ÉР Ψ2 d²N dp_TdΔφ₂ [Arb. Units] Units 20-40% 40-60% ATLAS Preliminar ATLAS Preliminan Pb+Pb Vs_{NN} = 5.02 TeV, 1.72 nb⁻¹ Pb+Pb s s = 5.02 TeV, 1.72 nb dp_TdΔφ_[Arb. L anti-k, R = 0.2, |y| < 1.2 anti-k, R = 0.2, |y| < 1.2 0.1 0.14 100 < p, < 126 GeV 100 < p_ < 126 GeV 0.13 0.12 0.12 0.1 0.1 Unequal path lengths of the n=2 $2 |\Psi_2 - \phi|$ $2|\Psi_2 - \phi|$ showers in the medium dp₇dΔφ₂ [Arb. Units] d²N dp₊dΔφ₂ [Arb. Units] 10-20% ATLAS Preliminary 0-10% ATLAS Preliminary Pb+Pb Vs_NW = 5.02 TeV, 1.72 nb⁻¹ Pb+Pb vs_w = 5.02 TeV, 1.72 nb anti-k, R = 0.2, |y| < 1.2 0.14 anti-k, R = 0.2, |y| < 1.2 dN 0.14 $\frac{d}{d\phi} \propto 1 + 2$ $v_n \cos(n(\phi - \Psi_n)),$ 100 < p_ < 126 GeV 100 < p_ < 126 GeV 0.1

0.12

0.11

R=0.2 jets with 100 < p_T < 126 GeV Unfolded in p_T and $\Delta \varphi_n$

Jets produced in the direction of the event-plane are less suppressed

2 14

0.12

0.1

Path length dependence of quenching

ATLAS-CONF-2020-019

36

Unequal path lengths of the showers in the medium

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{n} v_n \cos(n(\phi - \Psi_n)),$$

R=0.2 jets with 100 < p_T < 126 GeV Unfolded in p_T and $\Delta \varphi_n$

Angular distribution of jets with respect to Ψ_3

Smaller effect for n=3
A deeper insight

How is the parton shower modified in the hot and dense QCD medium?

What is the resolution scale of the quark-gluon plasma?

Does the jet suppression depend on substructure?

Inclusive fragmentation functions

Inclusive fragmentation functions

- Enhancement at low and high- $z(p_{\tau})$.
- Suppression at intermediate $z(p_{T})$.
- D(z,(p_T)) modifications do not scale with p_{T,jet} at low-z(high-p_T).

Study *FF* as a function of the angular distance between the charged particle and the jet axis.

<u>__</u>__

In central collisions $R_{D(pT,r)}$ is above unity at all *r* for all $p_T < 4 \text{ GeV} \longrightarrow \text{Energy lost by jets}$ is being transferred to particles with $p_T < 4 \text{ GeV}$ with larger radial distance.

In central collisions $R_{D(pT,r)}$ is above unity at all *r* for all $p_T < 4 \text{ GeV} \longrightarrow \text{Energy lost by jets}$ is being transferred to particles with $p_T < 4 \text{ GeV}$

Study FF as a function of the angular distance between the charged particle and the jet axis.

$$D(p_{\rm T}, r) = \frac{1}{N_{\rm jet}} \frac{1}{2\pi r} \frac{d^2 n_{\rm ch}(r)}{dr dp_{\rm T}}$$
$$r = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

In central collisions $R_{D(pT,r)}$ is above unity at all *r* for all $p_T < 4 \text{ GeV} \longrightarrow \text{Energy lost by jets}$ is being transferred to particles with $p_T < 4 \text{ GeV}$

$$D(p_{\rm T}, r) = \frac{1}{N_{\rm jet}} \frac{1}{2\pi r} \frac{d^2 n_{\rm ch}(r)}{dr dp_{\rm T}}$$
$$r = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

In central collisions $R_{D(pT,r)}$ is above unity at all *r* for all $p_T < 4 \text{ GeV} \longrightarrow \text{Energy lost by jets}$ is being transferred to particles with $p_T < 4 \text{ GeV}$

Jet core remains unmodified.

Study FF as a function of the angular distance between the charged particle and the jet axis.

$$D(p_{\rm T}, r) = \frac{1}{N_{\rm jet}} \frac{1}{2\pi r} \frac{d^2 n_{\rm ch}(r)}{dr dp_{\rm T}}$$
$$r = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

In central collisions $R_{D(pT,r)}$ is above unity at all *r* for all $p_T < 4 \text{ GeV} \longrightarrow \text{Energy lost by jets}$ is being transferred to particles with $p_T < 4 \text{ GeV}$

Jet core remains unmodified.

Yield of soft particles starts to drop down when $r \rightarrow 0.8$.

What can be learnt from large-*R* jets? ⁴⁶

Measure jet R_{AA} as a function of jet sub-structure using sub-jets

J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, Phys. Lett. B725 (2013) 357

What can be learnt from large-*R* jets? 47

Measure jet R_{AA} as a function of jet sub-structure using sub-jets

J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, Phys. Lett. B725 (2013) 357

recluster jets and remove soft contributions

R = 0.2 jets with $p_T > 35$ GeV reclustered into anti-k_t R = 1.0Allows the study of k_t sppliting scale

 $\sqrt{d_{12}} = \min(p_{T,1}, p_{T,2}) \cdot \Delta R_{12}$

R_{AA} as a function of jet p_T

 Large-R (re-clustered with 0.2 jets and soft particles removed) jets are increasingly suppressed with centrality.

R_{AA} as a function of jet p_T

ATLAS-CONF-2019-056

- Large-R (re-clustered with 0.2 jets and soft particles removed) jets are increasingly suppressed with centrality.
- R = 0.4 jets slightly less suppressed, but trend is similar.

R_{AA} as a function of jet sub-structure

50

The lowest $\sqrt{d_{12}}$ interval is populated with jets with single "isolated" sub-jet - SSJ

- Significant change of the R_{AA} magnitude between jets with SSJ and those with more complex sub-structure.
- Then R_{AA} is not dependent on $\sqrt{d_{12}}$.

R_{AA} as a function of jet sub-structure

The lowest $\sqrt{d_{12}}$ interval is populated with jets with single "isolated" sub-jet - SSJ

- ATLAS-CONF-2019-056
- Significant change of the R_{AA} magnitude between jets with SSJ and those with more complex sub-structure.
- Then R_{AA} is not dependent on $\sqrt{d_{12}}$.
- This behaviour is not dependent on jet p_T (up to 500 GeV).

The Z boson tags the initial energy, direction, and flavour of the opposing parton before it starts to shower and propagate through the QGP.

Access to low- p_T ranges not reached by reconstructed jets —> precious for understanding the mechanisms of the parton energy loss.

- Z -> ee or Z -> μμ
- 76 < m_z < 106 GeV
- *p*_T^z > 30 GeV

Measure the average number of charged particles per Z and I_{AA} = yield in Pb+Pb / yield in pp

- Z -> ee or Z -> μμ
- 76 < m_z < 106 GeV
- *p*T^z > 30 GeV

Measure the average number of charged particles per Z and I_{AA} = yield in Pb+Pb / yield in pp

- Z -> ee or Z -> μμ
- 76 < m_z < 106 GeV
- *p*T^z > 30 GeV

Measure the average number of charged particles per Z and

 I_{AA} = yield in Pb+Pb / yield in pp

Charged particles

- *p*_T^{ch} > 1 GeV
- $|\Delta \varphi| > 3\pi/4$

Good agreement with the predictions of the Hybrid model (JHEP 03 (2016) 053) in the entire p_T^{ch} range and for both p_T^Z selections.

- Inclusive jets in Pb+Pb are suppressed relatively to pp up to a factor of 2.
- Evidence of path length dependence of jet energy loss.
- Jet substructure strongly modified in Pb+Pb collisions with onset at 4 GeV.
- Reclustered R=1.0 jets with single sub-jet less quenched than those with more complex substructure.
- Suppression of high-p_T hadrons in Z-tagged hadron yields; enhancement at low-p_T.

An 80 years old prediction - LbyL⁵⁷

Heisenberg, W., Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. *Z. Physik* **98**, 714–732 (1936). <u>https://doi.org/10.1007/BF01343663</u>

The fact that electromagnetic radiation can be transformed into matter and vice versa leads to modifications of the Maxwell's equations...

An 80 years old prediction - LbyL⁵⁸

Heisenberg, W., Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. *Z. Physik* **98**, 714–732 (1936). <u>https://doi.org/10.1007/BF01343663</u>

The fact that electromagnetic radiation can be transformed into matter and vice versa leads to modifications of the Maxwell's equations...

Evidence of LbyL scattering (Nature Physics 13, 852–858(2017)): 4.4 (3.8) $\sigma_{fid} = 70 \pm 24$ (stat) ± 17 (syst) nb, in agreement with SM predictions.

Noawdays perspective

Heisenberg, W., Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. *Z. Physik* 98, 714–732 (1936). <u>https://doi.org/10.1007/BF01343663</u>

The fact that electromagnetic radiation can be transformed into matter and vice versa leads to modifications of the Maxwell's equations...

LbyL may be sensitive to BSM

- Exotic charged particles
- Extra dimensions
- Axion-like particles ALP

γγ→γγ in Ultra Peripheral Collisions

arXiv:2008.05355

Detector calibrated with $\gamma\gamma \rightarrow e^+e^-$

STARlight MC describe kinematics well, in general

Signal plus non-negligible backgrounds $A_{\varphi} < 0.01$ defined as the signal region

$\gamma\gamma \rightarrow \gamma\gamma$ in UPC - search for Axion-like particles ⁶³

95% CL upper for $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$

The exclusion limits from this analysis are the strongest so far for $6 < m_a < 100 \text{ GeV}$

Outlook

Stay tuned to data Run 3 data. Integrated luminosity will increase from 2.2 to 6 nb⁻¹. Heavy Flavour jets and Top quark studies will be a priority.

Many topics were not covered, but they are unmissable: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

ATLAS Performance (γγ→γγ in UPC) arXiv:2008.05355

Source of uncertainty	Detector correction (C)
	0.263 ± 0.021
Trigger efficiency	5%
Photon reco. efficiency	4%
Photon PID efficiency	2%
Photon energy scale	1%
Photon energy resolution	2%
Photon angular resolution	2%
Alternative signal MC	1%
Signal MC statistics	1%
Total	8%

Table 1: The detector correction factor, C, and its uncertainties for the integrated fiducial cross-section measurement.

γγ→γγ in Ultra Peripheral Collisions

arXiv:2008.05355

Dimuon pairs resulting from photonuclear interactions occurring simultaneously with the hadronic collision.

- Data reveals balance in energy, but acoplanarity is broadning with centrality.
- STARlight agrees in peripheral, but not in central collisions.

Phys. Rev. Lett. 121 (2018) 212301

γγ→γγ in Non-Ultra Peripheral Collisions

Phys. Rev. Lett. 121 (2018) 212301

if broadening results from small $k_{\rm T}$ transfer:

$$\langle \alpha^2 \rangle = \langle \alpha^2 \rangle_0 + \frac{1}{\pi^2} \frac{\left\langle \vec{k}_{\rm T}^2 \right\rangle}{\left\langle p_{\rm T\,avg}^2 \right\rangle}$$

Centrality	$\langle N_{\rm part} \rangle$	$p_{\text{Tavg}}^{\text{RMS}}$ [GeV]	Gaussian fit			Convolution fit
			$\sigma_A(\times 10^3)$	$\sigma_{\alpha}(\times 10^3)$	$k_{\rm T}^{\rm RMS}$ [MeV]	$k_{\rm T}^{\rm RMS}$ [MeV]
0-10%	359±2	7.0 ± 0.1	$17.9^{+1.0}_{-0.9}$	3.3±0.4	66±10	70±10
10-20%	264±3	7.7±0.4	$13.6^{+1.2}_{-1.0}$	2.3±0.3	40±7	42±7
20-40%	160±3	7.4±0.3	$17.2^{+0.4}_{-0.4}$	2.5 ± 0.2	48±6	44±5
40-80%	47±2	6.8±0.3	$16.1^{+0.1}_{-0.1}$	2.0±0.1	35±4	32±2
> 80%	_	7.0±0.3	$15.5^{+0.1}_{-0.1}$	1.40 ± 0.03	-	-

• Modifications are qualitatively consistent with re-scattering of the muons while crossing the QGP.

ATLAS Performance

70

No dependence of the muon reconstruction efficiency on centrality.

$J/\psi R_{pPb}$ and R_{AA} as a function of p_T

Quarkonia in p+Pb collisions is a probe of cold nuclear matter effects

• $R_{\rm pPb}$ is consistent with unity.

• J/ ψ is strongly suppressed in Pb+Pb; prompt and non-prompt mechanisms have different $p_{\rm T}$ dependence.

 $R_{pPb} = \frac{1}{208}$

$J/\psi R_{AA}$ as a function of p_T

non-prompt fraction

73

- Nearly independent on centrality.
- Slight difference from pp.

Upsilon R_{pPb}

arXiv1709.03089

74

$J/\psi R_{AA}$ as a function of |y| and centrality ⁷⁵

Modest dependence on rapidity for both prompt and non-prompt J/ψ .

Bottonium Fits to Dimuon Invariant Mass

76

pp

Quarkonia R_{pPb} as a function of p_T and y*

77

p+Pb collisions are important to disentangle effects due to quarkonium interactions with QGP from those atributed to CNM.

- R_{pPb} is consistent with unity for $p_T > 9$ GeV \rightarrow important reference for the suppression at high p_T in larger collision systems (Pb+Pb and Xe+Xe).
- Models provide qualitatively good description.

Charged Hadron *R*_{AA} **in Xe+Xe and Pb+Pb**⁷⁸

ATLAS-CONF-2018-007

- Note different x-axis
- Qualitatively similar

Charged Hadron *R*_{AA} **in Xe+Xe and Pb+Pb**⁷⁹

ATLAS-CONF-2018-007

- R_{AA} is very similar at low pT in central collisions.
- Otherwise Xe+Xe is less suppressed than Pb+Pb.

Charged Hadron *R*_{AA} **in Xe+Xe and Pb+Pb**⁸⁰

ATLAS-CONF-2018-007

Same colours, same energy deposited in FCal

Two-particle correlations in Xe+Xe collisions⁸¹

ATLAS-CONF-2018-011

Flow harmonics, v2—v5, have been measured in Xe+Xe at 5.44 TeV using 2-PC

• Short-range ($\Delta\eta, \Delta\phi \sim 0, 0$) correlations in all centralities are due to non-flow processes.

• Long-range ($\Delta\eta$ large) correlations are the result of the global anisotropy of the event.

Longitudinal flow decorrelations⁸²

Space-time evolution of the matter created is not boost-invariant in the

longitudinal direction: $v_n(\eta_1) \neq v_n(\eta_2) \rightarrow FB$ asymmetry

 $\Phi_n(\eta_1) \neq \Phi_n(\eta_2) \rightarrow \text{sensitivity to twists}$

Harmonic flow vectors measured with charged particles over $|\eta| < 2.5$:

$$\vec{\mathbf{v}}_n(\boldsymbol{\eta}) = \mathbf{v}_n(\boldsymbol{\eta}) e^{in\Phi_n(\boldsymbol{\eta})}$$

Decorrelations \rightarrow use $r_{n|n,k}$ between the *k*th-moment of the *n*th-order flow

vectors in two different η intervals:

$$r_{n|n;k}(\eta) = \frac{\left\langle \boldsymbol{q}_n^k(-\eta)\boldsymbol{q}_n^{*k}(\eta_{\text{ref}}) \right\rangle}{\left\langle \boldsymbol{q}_n^k(\eta)\boldsymbol{q}_n^{*k}(\eta_{\text{ref}}) \right\rangle}$$

Longitudinal flow decorrelation in Pb+Pb collisions

Eur. Phys. J. C 76 (2018) 142

• $r_{n|n,k}$ shows a linear decrease with η_{ref} , except in the most central collisions.

- The decreasing trend of $r_{n|n,k}$ for $n \equiv 2-4$ indicates significant breakdown of the factorisation of two-particle flow harmonics.
- The decreasing trend is slightly stronger at 2.76 TeV (collision system less boosted).

Jet Reconstruction in the Detector

Jets are reconstructed by computational algorithms that group "towers" of energy deposited in the calorimeters.

The Underlying Event ("background") is estimated event-by-event, excluding the jet candidate.

Jet Reconstruction

• Underlying event estimated and subtracted for each longitudinal layer and for 100 slices of $\Delta \eta = 0.1$:

 $E_{T,subi}^{cell} = E_T^{cell} - \rho \mathcal{A}^{cell}$

 ρ is energy density estimated event-by-event from average over 0< $\phi<\!\!2\pi$

 $\boldsymbol{\cdot}$ Two methods to avoid biasing $\boldsymbol{\rho}$ due to jets

1 - Sliding window exclusion 2 - Exclude cells in jets satisfying $D = E_{T,max}^{tower} / \dot{E}_{T}^{tower} > 5$

 For R = 0.4, add an iteration step to ensure jets with E_T>50 GeV are always excluded from ρ estimate
Correct for underlying event v₂

ATLAS

Collisions Centrality

HI collision's dynamics controlled by impact parameter "*b*"

Transverse energy, \overline{E}_{T} , deposited in Forward Calorimeter.

The number of binary nucleon-nucleon collisions, and number of participants in a collision for each centrality interval is estimated using a Glauber model.

Electroweak probes in p+Pb collisions – γ

 Inclusive prompt photons in p+Pb collisions at 8.16 TeV.

 $E_{\rm T}^{\gamma} > 25 \text{ GeV}$ $E_{\rm T}^{\rm iso} < 4.8 \text{ GeV} + 4.2 \times 10^{-3} E_{\rm T}^{\gamma} \text{ [GeV]}$

- $R_{\rm pPb}$ consistent with unity at central and forward rapidity.
- $R_{\rm pPb} < 1$ for $\eta^* < -2$ due to isospin effects.
- Data consistent within uncertainties with both free nPDF and with the small effects expected from a nuclear modification of the parton densities.
- Data disfavours large suppression due to E-loss.

88

Electroweak probes: γ + jet p_{T} balance

Phys. Lett. B 789 (2019) 167

Jet v_n

The v_2 , v_3 and v_4 values for R=0.2 jets as a function of centrality

- Positive v₂, up to 4%.
- No dependence on the jet *p*_T within uncertainties.
- v₃ and v₄ compatible with 0.