

LIP Internship Program'2020

Cosmic Rays in a single day

Jorge Gouveia & Miguel Pereira

10 September 2020

- Provide active investigative activities to know cosmic rays and latest discoveries and to know the work of scientists.
- Explore 10% of data Pierre Auger Observatory in a Masterclasses.
- Outline a program dedicated to secondary school students to explore data in a day.
- Identify the physical concepts and data processing techniques to implement during an investigative cycle.
- Investigative cycle in a "Cosmic Rays in a single day":
 - Principal question;
 - Previsions;
 - Exploring;
 - Answering the principal question.

Cosmic rays

Pierre Auger Observatory Ultra High Energy Cosmic Ray (UHECR)

Design

- UHECR Study $E \ge 10^{18} eV$

- UHECR detection
 - . Surface Detector (SD)
 - A 1500 m triangular grid

- Total Number of SD: 1600
- . Fluorescence Detector (FD)
 - 4 fluorescence telescopes

Event ID: 24261400 Time: 11/23/2013 19:40:26 Energy: 2.91x10¹⁹ eV

Number of Stations: 14

- In Malargüe Argentina
- Altitude relative to sea level: 1400 m
- Total area of SD: 3000 \mbox{km}^2

Surface detector

How do we detect cosmic ray showers?

Charged particle travels at a speed above the speed of light in the medium (water), they will emit Cherenkov radiation.

Cherenkov detectors

- Cherenkov radiation
- Photomultiplier (PMT)
- Electrical signal is proportional to the secondary particles energy
- Registered time GPS based timing

The Auger range of energies $10^{18} eV - 10^{20} eV$

Empirical relation between flux and primary energy particle follows a power law:

 $F(E) \propto E^{-lpha}$

Cosmic Ray Spectra of Various Experiments

Investigative cycle in a "Cosmic Rays in a single day"

Example of the investigative cycle to answer question 1

Principal questions:

question 1: What is the energy spectrum of the primary cosmic rays seen in Auger?

Previsions:

Students' ideas when asked, what they know about the energy spectrum? How would you organize the number of particles and the energy?

Exploring:

Use real data; VISPA software; work with numbers and units; linear and logarithmic scales; prefixes; solid angle; cartesian; equatorial and galactic coordinates.

Answering the principal question:

In small groups and plenary, discuss the results compatibility between collaboration (100%) and public data (10%).

How to do the flux plot?

1 - histogram

2 - Exposure

 $exposure = S \Omega t$

3 -Flux

differential flux = $\frac{N}{E S \Omega t}$

4 - Selection of energies

how to compare the energy spectrum with that of the Auger collaboration?

Multiply the differential flow by E^3

Interpretation of the data and its compatibility and answer to the question 1.

Auger spectrum (2017-100%)

Public Data Auger spectrum (10%)

galactic extragalactic extragalactic

Example of the investigative cycle for the question 2

question 2: Where do the highest energy cosmic rays seen by Auger come from? Final part: Answering the principal question

Fluxes of particles in equatorial coordinates

Auger (2017-100%)

 $E \ge 8 EeV$

cosmic-ray anisotropy

Public Data Auger(10%)

cosmic-ray anisotropy

Conclusions

- A day with cosmic rays has all the elements to let young people know what it is to be a scientist in particle physics.
- Allows you to use an active strategy to disseminate scientific processes to students and teachers.
- Allowed to prepare masterclasses "Cosmic Rays in a single day" in Madeira island in November, this year.

MIGUEL

SYSTEM

FLUORESCENCE DETECTOR

The Auger Observatory's fluorescence detectors are much more sensitive than the human eye and can "see" distant air showers develop

TOOLS

Is developed at the RWTH Aachen University in Germany and is used for teaching data analysis

Auger Spectrum 2017

The Visual Physics Analysis (VISPA)

RECONSTRUCTION OF ENERGY

ENERGY DEPOSIT (DEDX) AS A FUNCTION OF ATMOSPHERIC DEPTH X

\rightarrow Gaussian area

dEdX = aux2 DeltadEdX = aux2error pylab.errorbar(X, dEdX,yerr=DeltadEdX,fmt='or',capsize=0, ms=3, elinewidth=1, ecolor='k', mew=1, mec='k', mfc='k')

def Gauss(X, dEdXmax, Xmax , UspL):
 return dEdXmax*exp(-(X - Xmax)**2 / (2 * UspL**2))

The sum of the squared residuals of Gauss(X, *popt) - dEdX is minimized.

popt, pcov = curve_fit(Gauss, X, dEdX, p0=[dEdXmax, Xmax, UspL])
standardDeviation = sqrt(diag(pcov)) #standard deviation

MAX XMAX IN A COSMIC RAY

Origins:

Blue, Green-> Galactic, max at 18,75 Red, Yellow-> Extra Galactic, start at +/- 19

MY EXPERIENCE

- Vispa and Python
- Physics
- How the data is gathered

3	31 del		
	32 self.file	rists = set()	
	33 self.logdupe	s = True	
	35 self.debug	debug	
	36 self.logger	Logging	and the second like
	37 if path:	Le = open(os.path.jpp)((pent))	
	38 self.fi	le.seck(0)	a 🗰 mittenit
	39 self.fi	ingerprints.	
	40		
	42 Classmethod	nas(cls, settings)	
	def from_setts	ttings.getboold and a state	
	return cls	s(job_dir(settings))	
	45	and solf request)	
	def request_s	request fingerprint(request)	
	fp = set	self.fingerprints:	
	11 IP In retu	rn True	
	self.fir	gerprints.addite	
	if self	file:	
	sel	T.TILE. M. Store	
		fingerprint(self, reasons)	
	det request	request_fingerprint	
	feculi		

LIP Internship Program'2020

Thanks!

Questions that came up?

Jorge Gouveia & Miguel Pereira