

# Measurement of muon efficiencies in CMS open data

#### Tag and Probe method

Sep. 11, 2020 LIP Internship 2020 Authors: <u>Allan Jales</u> and <u>Thomas Gaehtgens</u> Advisors: Eliza Melo, Nuno Leonardo and Sandro Fonseca

#### Outline

- A brief overview of the work;
- CMS Open Data;
- Tag & Probe workflow;
  - Tag & Probe method efficiency ( $\epsilon$ );
  - Muon identification;
- Evaluating efficiencies;
- Signal extraction methods evaluation;
  - Sideband subtraction & results;
  - Fitting method & results;
- Comparison between sideband & fitting results;
- Summary and Next steps.

# A brief overview of the work



#### CMS Open Data

# CMS releases more than one petabyte of open data

This release includes datasets that were used to discover the Higgs boson

20 DECEMBER, 2017 | By Achintya Rao



The CMS Open Data is an initiative that makes scientific data from the CMS experiment available to the public. With data transparency It tries to make science more inclusive and open.

https://home.cern/news/news/experiments/cmsreleases-more-one-petabyte-open-data

#### Tag & Probe workflow



# Tag & Probe method efficiency (ε)

The Tag & Probe method consists in calculating the efficiency of a detector using gathered data without the dependency on the simulations.

This method uses known resonances (e.g J/ $\psi$ ,  $\Upsilon$ , Z)

**Tag muon** = well identified, triggered muon (tight selection criteria)

**Probe muon** = unbiased set of the desired particle type with a very loose selection criteria

$$\varepsilon = \frac{Passing \ probe \ muon \ criteria}{All \ probe \ muon} \xrightarrow{} \text{Tracker muon}$$

#### Muon identification



## **Evaluating efficiencies**



The efficiency is calculated using only **signal** For example using  $J/\psi$  invariant mass distribution we have:

Signal = Gaussian + Crystal Ball

How can we extract signal quantities probe muon ( $p_{\tau}$ ,  $\eta$ ,  $\phi$ )?

#### Signal extraction methods evaluation





We would like to evaluate two signal extraction methods:

- Sideband subtraction
- Fitting

#### Extracting signal: sideband subtraction using $J/\psi$ candidates



#### Results: efficiencies for $J/\psi$ using sideband subtraction



#### Extracting signal: sideband subtraction for Y (1S)



#### Results: efficiencies for Y (1S) using sideband subtraction



#### Results: comparison between $J/\psi$ and $\Upsilon$ (1S) using sideband subtraction



# Extracting signal: Fitting method



#### Results: efficiencies for $J/\psi$ using fitting method



#### Results: efficiencies for Y (1S) using fitting method



#### **Comparison between both methods**

#### Results: comparison between sideband subtraction and fitting for $J/\psi$



#### Results: comparison between sideband subtraction and fitting for Y (1S)



# Summary

- We developed a tool to evaluate tag & probe method using CMS Open Data for J/ψ and Y decaying in dimuons;
- We measured efficiency for tracker muon ID making a comparison between data and MC;
- Tested sideband subtraction and fitting method to extract signal;
  - At first look, fitting seems to be a better method;

# Next steps

- Use standalone and global muon IDs;
- Optimize the code for CMS Open Data users;
- Implement s-Plot method;
- Evaluate efficiency for Z boson
- Improvement propagating uncertainties in sideband method

#### References

Our Workspace: <a href="https://cern.ch/cms-lip/internship/tnp">https://cern.ch/cms-lip/internship/tnp</a>

Githubs: <u>https://github.com/allanjales/tag-probe</u> <u>https://github.com/AthomsG/LIP\_INTERNSHIP</u>

Used Ntupples: <u>shorturl.at/dqv45</u>

Tag and probe Wiki: <u>shorturl.at/imILM</u>

#### References

Datasets:

- Jpsi MC: <u>http://opendata.cern.ch/record/1335</u>
- Upsilon MC: <u>http://opendata.cern.ch/record/1522</u>
- Data (2011 Legacy): http://opendata.cern.ch/record/27

CMS Open data:

http://opendata.cern.ch/search?experiment=CMS

HLT Triggers Path (J/ $\psi$  - Data/MC):

HLT\_Dimuon10\_Jpsi\_Barrel\_v\*

HLT Triggers Path (Y - Data):

HLT\_Dimuon0\_Barrel\_Upsilon

HLT Triggers Path (Y - MC):

HLT\_Dimuon0\_Upsilon

LIP Internship 2020



#### Backup

#### **CMS** Detector



25

#### **CMS** Detector



#### Inner Tracker



#### Muon Chamber



Barrel



#### Barrel



# Tight Id efficiency vs $p_T$ , $\eta$



\* Error bars in the plot include only statistical uncertainty

Tight muon ld efficiency as a function of  $p_T$  and  $\eta$  for 2017 data and MC. The denominator is all tracker tracks with  $p_T > 20$  GeV. The drops at around  $|\eta| = 0.2$  are due to the cracks between wheels in the muon detectors. There is no significant dependency with the number of primary vertex. The drops in the forward region are due to inactive chambers not modelled in the MC.

From these results a data-to MC scale factor of ~98% is derived with a systematic uncertainty < 0.5%.



#### CMS DP-2018/042 https://cds.cern.ch/record/2629364/files/DP2018\_042.pdf

# **Method and samples**

- Efficiencies are computed by means of a tag-and-probe method exploiting the  $Z \rightarrow \mu^+\mu^-$  resonance.
- Data:
  - Proton-proton collision data at 13 TeV corresponding to an integrated luminosity of 16.3  $fb^{-1}$  (2016), 41.3  $fb^{-1}$  (2017) and 11.8  $fb^{-1}$  (2018)
  - Events collected using single muon triggers.
  - 2017 and 2016: reconstruction using realistic calibrations and alignment.
  - 2018: prompt reconstruction (using startup calibration and alignment)

#### Simulation

- Drell-Yan + jets LO sample (madgraph)
- Events are re-weighted to match the pileup distribution in data.

CMS DP-2018/042

https://cds.cern.ch/record/2629364/files/DP2018\_042.pdf

#### Results for $J/\psi$ in sideband subtraction





#### Results for $J/\psi$ in sideband subtraction







#### Results for $J/\psi$ in sideband subtraction







#### Results for Y in sideband subtraction

#### Data (2011) Tracker Probe - Total CMS Open Data Background 104 Signal 10 10<sup>2</sup> 10 120 μ p (GeV/c) 20 100 All Probe — Total CMS Open Data Background 10 Signal 10 10<sup>2</sup> 10 120 μ p (GeV/c) 20 40 60 80 100



#### Results for Y in sideband subtraction



#### Simulated Data



#### Results for Y in sideband subtraction

#### Data (2011)



#### Simulated Data

