(Intro to) jets	CNNS	Obtained Results	Conclusions

Studying jet quenching phenomenon using deep learning on low level variables

Filipe Cunha

filipe.miranda.cunha@tecnico.ulisboa.pt Supervised by: Nuno Castro, Miguel Romão

September 11, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(Intro to) jets	CNNS	Obtained Results	Conc
0			

(Intro to) jets Jets

2 CNNS

- Convolutional Neural Networks
- Convolutions
- Preveting Overfitting

Processing Data

lusions

- 3 Obtained Results
 - Basic Networks

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- VGG
- ResNet
- Inception
- XCeption
- 4 Conclusions

(Intro to) jets	CNNS	Obtained Results	Conclusions
0•			
Jets			
lote			

Figure 1: Visualization of a jet

Figure 2: Sketch of pp-collision and resulting collimated spray of particles, a jet

Jet-Quenching

In heavy ion collisions, a dense medium called the quark gluon plasma is created, and jets can interact with this medium reducing their energy.

(Intro to) jetsJets

2 CNNS

- Convolutional Neural Networks
- Convolutions
- Preveting Overfitting

Processing Data

- 3 Obtained Results
 - Basic Networks

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- VGG
- ResNet
- Inception
- XCeption
- Conclusions

(Intro to) jets	CNNS	Obtained Results	Conclusions
	00000		
Convolutional Neural Netwo	orks		
<u> </u>			

Convolutional Neural Networks

Figure 3: CNN structure

(Intro to) jets	CNNS	Obtained Results	Conclusions
	00000		
Convolutions			
Convolutions			

Figure 4: Convolution Operation Schema

Mathematical definition

$$w_{ijk}^{(q)} = \sum_{r=1}^{F_q} \sum_{s=1}^{F_q} \sum_{k=1}^{d_q} w_{rsk}^{(p,q)} h_{i+r-1,j+s-1,k}^{(q)}$$

(Intro to) jets 00			(CNNS ○○○●○○	Obtained Results	Conclusions
Preveting Over	fitting					
		~		_		

Preventing Overfitting

L^p-Regularization

- Adds a penalty $\lambda \| \bar{W} \|^p$ to the loss function;
- Constrains a model to use fewer non-zero parameters;

Early Stopping

- Stops gradient descent after consecutive iterations without improving;

Dropout

- Each neuron has a probability p of being dropped out of training for each iteration;
- Prevents co-dependency between neurons;

(Intro to) jets 00	CNNS ○○○○●○	Obtained Results 00000000	Conclusions 000
Processing Data			
Processing Data	3		

Dataset

- Very Sparse Matrices
- 1165404 Images, separated in Training, Validation and Test Sets

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Figure 5: Image example

(Intro to) jets	CNNS	Obtained Results	Conc
00	○○○○○●		000
Processing Data			

Processing Data

lass G "Ge	enerator(tf.keras.utils.Sequence): nerates data for Keras"
def	init (self,
	x.
	×
	weights.
	batch size=32.
	shuffle=True.
	normalise=True):
	"Initialization"
	self.X = X
	self v = v
	self batch size = batch size
	self weights = weights
	self shuffle = shuffle
	self normalise = normalise
	self.on_epoch_end()
def	len (self):
	"Denotes the number of batches per epoch"
	return math.ceil(self.X.shape[0] / self.batch_size)
def	getiten(self, index):
	"Generate one batch of data"
	# Generate indexes of the batch
	<pre>indeces = self.indeces[index * self.batch_size : (index + 1) * self.batch_size]</pre>
	<pre>X_tmp = self.X[indeces].todense()</pre>
	y_tmp = self.y[indeces]
	w_tmp = self.weights[indeces]
	if self.normalise:
	X_tmp /= X_tmp.max(1).max(1).shape
	return X_tmp, y_tmp
def	on_epoch_end(self):
	"Updates indexes after each epoch"
	<pre>self.indeces = np.arange(len(self.X))</pre>
	if self.shuffle == True:
	np.random.shuffle(self.indeces)

Figure 7: Generator class

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

(Intro to) jets	CNNS	Obtained Results	Conclusions
00	000000	•••••••	000

1 (Intro to) jets lets

- Convolutional Neural
- Convolutions
- Preveting Overfitting

- Basic Networks

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- VGG
- ResNet
- Inception
- XCeption

(Intro to) jets 00	CNNS 000000	Obtained Results	Conclusions 000
Basic Networks			
Basic Networks			

Training the model

- Sigmoid activation in the last layer.
- Binary cross-entropy as the loss function.
- Early Stopping after 5 consecutive iterations without improving.

Train AUC Val Loss Val AUC activation: relu 22.2533 strides: 2 0.4986 0.5000 Ir: 0.264609 activation: selu strides: 4 0.5014 4 6076 0.5000 Ir: 0.077206 activation: relu strides: 2 0.8249 0.8246 0.6331 Ir: 3.31145 activation: selu 0.5011 1.3742 strides: 4 0.5000 Ir: 0.010146

Table 1: Tweaked AlexNet

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Figure 8: AlexModelV2

(Intro to) jets 00	CNNS 000000	Obtained Results ○○●○○○○○	Conclusions
VGG			
VGG			

Depth	Train AUC	Val Loss	Val AUC
10	0.6531	0.7563	0.6321
16	0.7125	0.6875	0.6799
21	0.7041	0.6385	0.6888

Table 2: VGG Models

Figure 9: VGG Schema

VGG

- Is defined by the recurring presence of a convolution block, with pooling, with an increasing number of filters.

(Intro to) jets 00	CNNS 000000	Obtained Results	Conclusions
ResNet			
ResNet			

Residual Layers

Information can skip certain weight layers, allowing for deeper networks.

Figure 10: Skip Connection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(Intro to) jets 00	CNNS 000000	Obtained Results ○○○○●○○○	Conclusions 000
ResNet			
ResNet			

Depth	Train AUC	Val Loss	Val AUC
32 (v1)	0.7147	0.6356	0.6984
38 (v1)	0.7051	0.6414	0.6986
70 (v1)	0.7456	0.6128	0.7123
56 (v2)	0.7796	0.71656	0.6820
110 (v2)	0.8346	0.7056	0.6983

Table 3: ResNet Models

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

(Intro to) jets	CNNS	Obtained Results	Conclusions
		0000000	
Inception			

Layer (type)	Burget Shope	Parios #	Connected 19
Laput_4 (SrputLaper)	[18ate, 33, 33, 21]	•	
carv24_18 (Carv28)	(Hone, 33, 33, 64)	192	(mont_4(#))#)
carv2(_29_iCarv20)	(Hone, 33, 33, 64)	192	Lepot_4(#)101
inquitation rangeling on	0666, 33, 33, 21		Lipst_4(4)[4)
condi 18 (Condi)	(hose, 33, 33, 44)	36526	cmv24_18(0)(4)
cervit(21 Kervitt)	(Hone, 33, 33, 64)	182454	cerv24_2838044
cerv24_22_1Cerv29)	(NONE, 33, 33, 64)	132	NOC.30012628(3(8)18)
cancadenade_3 (Cancadenade)	(mee, 31, 31, 242)	*	0894204_081051181 089420_223041041 089420_223041041
batch_normalization_2 lbatchmor	Occe, 33, 33, 2922	298	cencerterante_318088
Brepeut_2 (Drepout)	(Note, 33, 33, 392)		Battle (normalization, 3 [0] [0]
und(3 Km3)	Gene, 31, 31, 3360	223342	#repert_238(04)
batch_rormalization_3 Imstcher	00000, 31, 31, 1280	502	cerv2d_15(e)((e)
ALL ALL A CALLMAN A	3666, 11, 11, 1210		Battle_recondition_3[4][4][4]
Flatter 3 (Flatter)	(hove, 323484)	4	actiontion_6(0((0)
derse_6 (beroe)	Gene, 5125	62909699	flatter_338041
drepest_3 (Drepest)	(Note, 312)		detics_6(1)(1)
desis_T (Desis)	(hine, 1)	1111	drupm1_3]0[(4)
activation_7 (Activation)	Gene, 33		dense_T(#118)

Figure 11: Basic Inception Module

Figure 12: Inception Module Example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(Intro to) jets 00	CNNS 000000	Obtained Results	Conclusions 000
Inception			
Inception			

	Train AUC	Val Loss	Val AUC
1 module 3 cols	0.7518	0.6891	0.6544
1 module 4 cols	0.6692	0.6587	0.6742
2 modules 3 cols	0.7231	0.6252	0.7156
2 modules 4 cols	0.7274	0.6035	0.6952

Table 4: Inception Models

(ロ)、(型)、(E)、(E)、 E) の(()

(Intro to) jets 00	CNNS 000000	Obtained Results ○○○○○○●	Conclusions 000
XCeption			
XCeption			

Figure 13: Xception results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(Intro to) jets	CNNS	Obtained Results	Conclusions
00	000000	00000000	●○○

(Intro to) jetsJets

2 CNNS

- Convolutional Neural Networks
- Convolutions
- Preveting Overfitting

- Processing Data
- 3 Obtained Results
 - Basic Networks

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- VGG
- ResNet
- Inception
- XCeption

(Intro to) jets	CNNS	Obtained Results	Conclusions
			000

Final Word

SE-Inception Module

(ロ)、(型)、(E)、(E)、 E) の(()

Figure 14: SeNet Inception Module

(Intro	to)	jets

CNNS 000000 Obtained Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you!