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Jets

Jets

Figure 1: Visualization of a jet

Figure 2: Sketch of pp-collision and
resulting collimated spray of
particles, a jet

Jet-Quenching

In heavy ion collisions, a dense medium called the quark gluon
plasma is created, and jets can interact with this medium reducing
their energy.

https://www.quantumdiaries.org/tag/jets/
http://cms.web.cern.ch/news/jets-cms-and-determination-their-energy-scale
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Convolutional Neural Networks

Convolutional Neural Networks

Figure 3: CNN structure

https://www.mdpi.com/1424-8220/19/22/4933/htm
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Convolutions

Convolutions

Figure 4: Convolution Operation Schema

Mathematical definition
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Preveting Overfitting

Preventing Overfitting

Lp-Regularization

- Adds a penalty λ‖W̄ ‖p to the loss function;
- Constrains a model to use fewer non-zero parameters;

Early Stopping

- Stops gradient descent after consecutive iterations without
improving;

Dropout

- Each neuron has a probability p of being dropped out of training
for each iteration;
- Prevents co-dependency between neurons;
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Processing Data

Processing Data

Dataset

- Very Sparse Matrices
- 1165404 Images, separated in Training, Validation and Test Sets

Figure 5: Image example

Figure 6: Dataset
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Processing Data

Processing Data

Figure 7: Generator class
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Basic Networks

Basic Networks

Training the model

- Sigmoid activation in the last layer.
- Binary cross-entropy as the loss function.
- Early Stopping after 5 consecutive iterations without improving.

Figure 8: AlexModelV2

Train AUC Val Loss Val AUC

activation: relu
strides: 2
lr: 0.264609

0.4986 22.2533 0.5000

activation: selu
strides: 4
lr: 0.077206

0.5014 4.6076 0.5000

activation: relu
strides: 2
lr: 3.31145

0.8249 0.8246 0.6331

activation: selu
strides: 4
lr: 0.010146

0.5011 1.3742 0.5000

Table 1: Tweaked AlexNet
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VGG

VGG

Figure 9: VGG Schema

Depth Train AUC Val Loss Val AUC

10 0.6531 0.7563 0.6321

16 0.7125 0.6875 0.6799

21 0.7041 0.6385 0.6888

Table 2: VGG Models

VGG

- Is defined by the recurring presence of a convolution block, with
pooling, with an increasing number of filters.

https://www.researchgate.net/figure/An-overview-of-the-VGG-16-model-architecture-this-model-uses-simple-convolutional-blocks_fig2_328966158
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ResNet

ResNet

Residual Layers

Information can skip certain weight layers, allowing for deeper
networks.

Figure 10: Skip Connection

http://www.lapix.ufsc.br/ensino/visao/visao-computacionaldeep-learning/deep-learningreconhecimento-de-imagens/
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ResNet

ResNet

Depth Train AUC Val Loss Val AUC

32 (v1) 0.7147 0.6356 0.6984

38 (v1) 0.7051 0.6414 0.6986

70 (v1) 0.7456 0.6128 0.7123

56 (v2) 0.7796 0.71656 0.6820

110 (v2) 0.8346 0.7056 0.6983

Table 3: ResNet Models
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Inception

Inception

Figure 11: Basic Inception Module Figure 12: Inception Module
Example

https://www.researchgate.net/figure/nception-module-of-GoogLeNet-This-figure-is-from-the-original-paper-10_fig3_312515254
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Inception

Inception

Train AUC Val Loss Val AUC

1 module 3 cols 0.7518 0.6891 0.6544

1 module 4 cols 0.6692 0.6587 0.6742

2 modules 3 cols 0.7231 0.6252 0.7156

2 modules 4 cols 0.7274 0.6035 0.6952

Table 4: Inception Models
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XCeption

XCeption

Figure 13: Xception results
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Final Word

Figure 14: SeNet Inception Module

https://medium.com/@konpat/squeeze-and-excitation-networks-hu-et-al-2017-48e691d3fe5e
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Thank you!
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