Heavy Quarks as Probes of the Primordial Plasma

Maria Faria, Artur Semião

Supervised by: Nuno Leonardo, Zhaozhong Shi

LIP Internship Program, Final Workshop, 2020.09.11

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Introduction

Goal: To study the properties of the quark gluon plasma (QGP) using b-quark heavy mesons

- QGP is predicted to exist under extreme conditions of temperature and density (e.g. primordial Universe)
- Can be recreated in heavy ion collisions like Pb-Pb
- b-quarks are created at early stages and so "record" information about the QGP evolution

Introduction

- Study the hadronization of the b-quark by measuring the B⁰_s(bs) cross section in pp collisions
- In this work the cross section of the B⁰_s is measured by reconstructing this meson from pp collision dataset through:

$$B_s^0$$
 decay channel: $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

• Later on extending the study to the B^+ (bu) meson and comparing results with the Pb-Pb collision data will provide unique information about the properties of the QGP

Differential Cross Section

Dataset and Pre-selection

Bs candidates invariant mass $m(\mu^+\mu^-K^+K^-)$: Pre Selection

 B_s^0 signal becomes visible after baseline selection

Optimised signal vs background selection using multivariate analysis (MVA)

Input variables used in the analysis for Bs

Btrk1Pt/Btrk2Pt Kaons Pt

Trk1DCAxy/Trk2DCAxy: Kaon tracks DCA PV xy: transverse impact parameter, devided by its error **Trk1DCAz/Trk2DCAz:** Kaon tracks DCA PV z: longitudinal impact parameter, devided by its error **Bchi2cl:** P(two kaon tracks from same decay vertex) **MassDis:** $|m(K^+K^-) - m(\phi)|$ **dls:** Distance PV to SV, devided by its error **Balpha:** angle between B_s^0 meson displacement and momentum **cos(Bdtheta):** cosine of angle between B_s^0 displacement

and mommentum in the transverse direction

Training

Classifiers: CutsGA and BDT

Training performed independently for 5 p_T bins: [4,7],[7,10]. {10,15], [15,20], [20,50] (GeV/c)

Signal events sample: MC candidates

Background events sample: Data sideband region candidates

Input variables signal vs background

Distributions of input variables used in training samples for p_T bin [10-15] (Gev/c)

Correlation matrices

Correlation matrices between variables used in training for p_T bin [10-15] (Gev/c)

Correlation Matrix (background)

Classifier Performance

 Best classifier can be identified by the largest AUC (area under the curve) - BDT

BDT optimal working point p_T [10,15] (Gev/c)

Maximize figure of merit FOM = $\frac{S}{\sqrt{S+B}}$

Max FOM = 14.31 for BDT score = 0.01 and effS = 0.79

BDT optimal working point p_T [10,15] (Gev/c)

Bs candidates after pre selection p_T bin [10-15] (Gev/c)

Bs candidates after optimal selection p_T bin [10-15] (Gev/c)

Likelihood Method & Signal Extraction

Likelihood Method

Extended Unbinned Maximum Likelihood Fit

$$L(\{m_i\}, \boldsymbol{\lambda}) = \prod_{i=1}^{N_{obs}} l(m_i) \frac{e^{-N} N^{N_{obs}}}{N_{obs}!}$$

$$(m_i) = N_S P_S(m_i; \mu, \sigma_1, \sigma_2) + N_{CB} P_{CB}(m_i; \lambda)$$

$$P_{S} = \alpha \, Gauss(\mu, \sigma_{1}) + (1 - \alpha) Gauss(\mu, \sigma_{2})$$

$$P_{CB} = Exp(\lambda)$$

Likelihood Method

 $l(m_i) = N_S P_S(m_i; \mu, \sigma_1, \sigma_2) + N_{CB} P_{CB}(m_i; \lambda)$

 $P_{S} = \alpha \, Gauss(\mu, \sigma_{1}) + (1 - \alpha) Gauss(\mu, \sigma_{2})$

$$P_{CB} = Exp(\lambda)$$

Coefficients	Value \pm Statistical Uncertainty
α	0.776 ± 0.046
λ	-1.6065 ± 0.0726
μ	5.36677 ± 0.00041
σ_1	0.01775 ± 0.00091
σ_2	0.00539 ± 0.00073
N _S	1409 ± 42
N _{CB}	2582 ± 54

Sideband Subtraction

Events / (0.01

Started from baseline implementation for PbPb described in NA/2019-219 (A.Pardal, J.Gonçalves, et al.)

sPlot

Started from baseline implementation for PbPb described in NA/2019-219 (A.Pardal, J.Gonçalves, et al.)

Based on the likelihood fit to B_s^0 invariant mass

sPlot vs Sideband Subtraction

The two methods are found to agree well.

MC Validation

MC vs S.S. vs sPlot

Some level of disagreement between data and MC can be observed for some variables.

sPlot vs MC

Can use the Data/MC ratio of **Bpt** to <u>reweight</u> MC and see how it affects the data-MC agreement of the other variables

Remaining disagreement can be propagated as systematic uncertainty

Reweighted MC

Differential Cross Section and Systematic Uncertainties Efficiency

Efficiency: determined from MC simulations, measures how much signal is not reconstructed or rejected by selection cuts.

$$\epsilon = \frac{N_{after \ cuts}}{N_{before \ cuts}}$$

 ϵ^{0} : without data/MC weights ϵ^{1} : with data/MC weights

MC disagreement

$$\Delta = \frac{\epsilon^1 - \epsilon^0}{\epsilon^0}$$

Efficiency Systematic Uncertainty: quantifies data-

Normalized Signal Yield

- 1. Divide p_T range into several bins
- 2. Exctract signal yield from fit (N_s)
- 3. Place abcissa at p_T mean, evaluated with sPlot
- 4. Normalize raw yield to p_T bin width ($N_s / \Delta p_T$)

Statistical Uncertainty: from fit (σ_{stat})

Systematic Uncertainty: compare signal yield results obtained with diferente PDF models with model used in EUML (nominal)

$$\sigma_{syst_raw} = \sqrt{\sigma_{bkg_poly}^2 + \sigma_{fit_range}^2 + \sigma_{sig_1gauss}^2}$$

27

p_{T} (GeV)	$d\sigma/dp_T$ (nb/GeV)	σ_{stat} (nb/GeV)	σ_{syst} (nb/GeV)
5-10	236	26	27
10-15	188	9.2	21
15-20	82.5	4.4	8.4
20-50	8.28	4.5	9.0

Conclusions

- We have studied the production of B_s^0 mesons at LHC with CMS experiment
- Signal vs background discrimination was optimized with ML (BDT)
- Signal yield extracted from data with likelihood procedure
- Detector efficiency was estimated with MC, validated with sPlot and sideband subtraction
- Systematic uncertainties were estimated
- B_s^0 production cross section in pp collisions at 5 TeV was measured

Next Steps

- Extend study to B^+ meson (work ongoing)
- Measure the relative production B_s^0/B^+ (fragmentation fraction)
- Measure *R_{AA}* (nuclear modification factor), comparing PbPb with pp **Overall study probes QCD, both in vacuum (pp) and in QGP media (PbPb)**

Questions?

Backup

Likelihood Method - B^+ result

 $l(m_i) = N_S P_S(m_i; \mu, \sigma_1, \sigma_2) + N_{CB} P_{CB}(m_i; \lambda) + N_{erf} P_{erf}(m_i) + N_{jpp}(fixed)$

 B^+ Invariant Mass Fit

 $P_{S} = \alpha \, Gauss(\mu, \sigma_{1}) + (1 - \alpha) Gauss(\mu, \sigma_{2})$

$$P_{CB} = Exp(\lambda)$$
 $P_{erf} = Erf$ $N_{erf} = f_{erf}N_S$

Coefficients	Value \pm Statistical Uncertainty	
α	0.551 ± 0.045	
λ	-0.17937 ± 0.01204	
μ	5.27896 ± 0.00019	
σ_1	0.02667 ± 0.00110	
σ_2	0.01351 ± 0.00053	
N_S	26.450 ± 333	
N _{CB}	248.846 ± 794	
f _{erf}	0.2197 ± 0.0138	32

Sideband Subtraction

$$V_{signal} = V_{peak} - rV_{sideband}$$

D

Started from baseline implementation for PbPb described in NA/2019-219 (A.Pardal, J.Gonçalves, et al.)

BDT training Pt Bin [4,7]

BDT training Pt Bin [7,10]

BDT training Pt Bin [15,20]

BDT training Pt Bin [20,50]

BDT training Pt Bin [4,7]

Bs mass reconstruction after BDT optimal working point cut in pt range 4-7 Gev/c

Bs mass reconstruction after BDT optimal working point cut in pt range 7-10 Gev/c

Backup

Bs mass reconstruction after BDT optimal working point cut in pt range 15-20 Gev/c

Bs mass reconstruction after BDT optimal working point cut in pt range 20-50 Gev/c

(Some) Variables used in the analysis

Bpt – Transverse momentum of B mesonBmass – Invariant mass of B meson

Rapidity (By) $y = \frac{1}{2} ln \left(\frac{E + p_z c}{E - p_z c} \right)$

 $y \rightarrow 0$: particle directed in XY plane $y \rightarrow +\infty$: particle along beam axis (positive z) $y \rightarrow -\infty$: particle along beam axis (negative z)

Pseudo-Rapidity (eta) $\eta = -ln\left(tan\left(\frac{\theta}{2}\right)\right)$

Dsvpv – distance between PV and SV (3D)

<u>DCA</u> – Distance of Closest Approach between kaon's /muon's trajectory and PV **Dxy, dxy** – xy componente of DCA (kaon,muon) **Dz,dxy** – z componente of DCA (kaon,muon)

Fit Validation

- Fit is unbiased if it gives the correct value for N_s
- Test this by generating 5000 pseudo-experiments (toy MC)
- Fit generated pseudo-data with the same function that was used in fitting the data

$$Pull = \frac{N_i - N_s}{\sigma_i}$$

 N_i : signal yield of pseudo-data i N_s : signal yield of data σ_i : uncertainty on N_i

Expected: Pull distribution mean close to zero and sigma close to 1

Fit Validation - B^+ (5 < pt < 100 GeV)

A RooPlot of "Bmass"

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.2

Fit Validation - B^+ (5 < pt < 50 GeV)

A RooPlot of "Bmass"

51

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

