

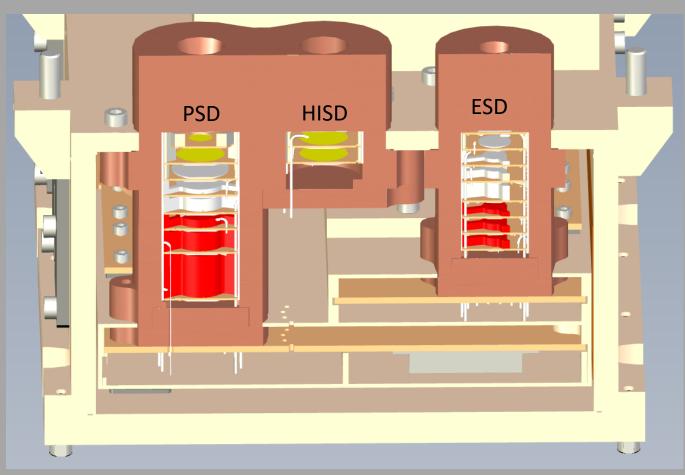
Functional test studies for the Engineering Qualification Model of RADEM

Nuno Taborda

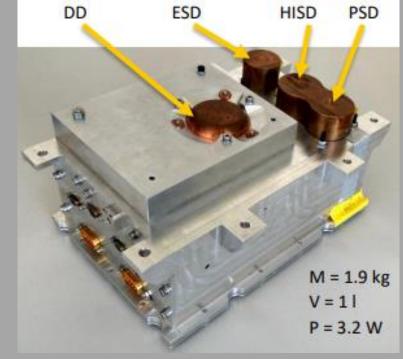
Coordinators: Patrícia Gonçalves/Marco Pinto

ESA JUICE Mission

Jupiter ICy Moons Explorer

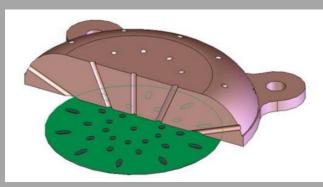

Mission to the Jovian System

Exploring the emergence of habitable worlds around gas giants:

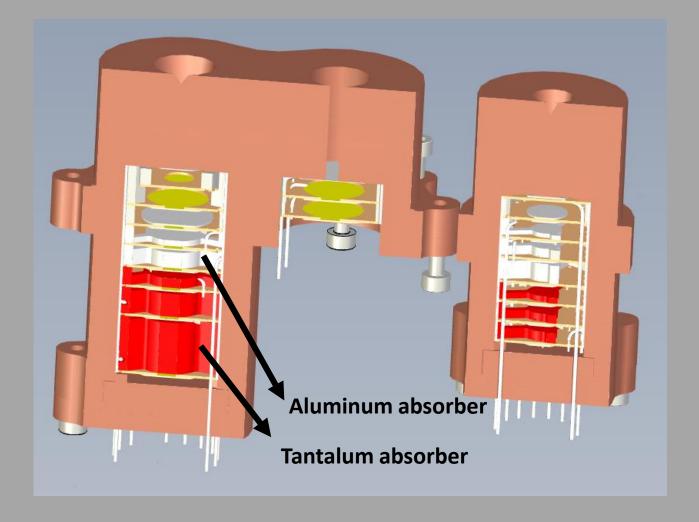

• Special emphasis on the ocean bearing moons, specifically Ganymede due to it's unique magnetic and plasma interactions with the surrounding Jovian system.

RADEM Radiation-hard Electron Monitor

Detection and characterisation of highly energetic particles; Capable of discriminating between types of particles and energy levels;

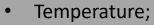

RADEM Engineering Model

- **DD** Directionality Detector;
- ESD- Electron Stack Detector;
- **HISD** Heavy Ion Stack Detector;
- **PSD** Proton Stack Detector.


Cross-sectional view of the Detector Stacks

RADEM Composition

- Copper colimators;
- 0.3 mm thick Silicon diodes arranged in stacks;
- Aluminum and Tantalum absorbers between detectors;



Directionality Detector- Designed to analyse the angular distribution of electrons

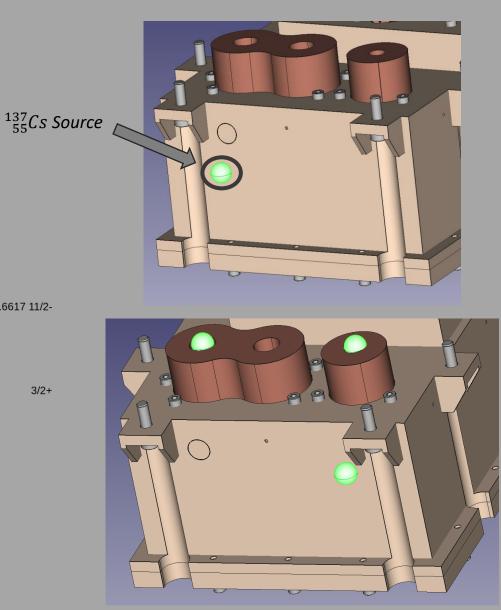
Motivation

- Detector testing perfomed between qualification tests:
 - Faster testing;
 - Simpler to implement;
- After each **<u>environmental test</u>** it is necessary to make sure the instrument is still working properly.

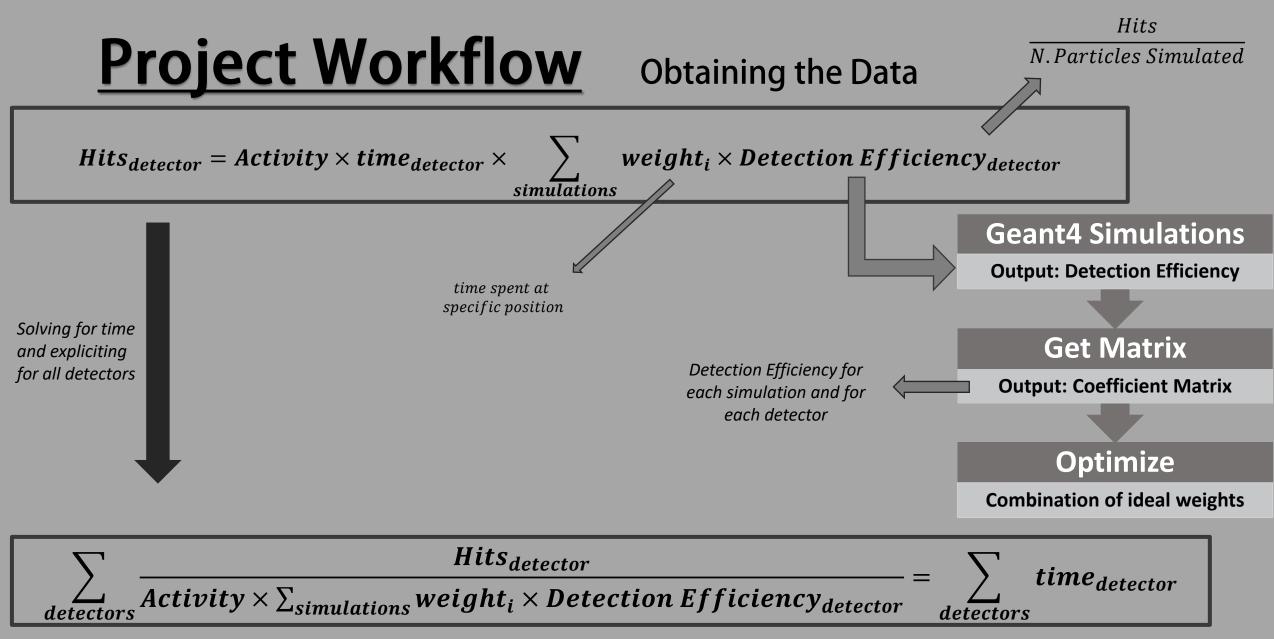
• Vibration;

- Not always practical (or possible) to use a particle beam for testing;
- Ideal to use a cheap and readily available testing method.

<u>Setup</u>


Common source for radiation-detection equipment calibration;

ys: VeV); 55Cs1377/2+7/2-7/2+


- Most significant decays:
 - β^{-} (max 0.512 MeV);

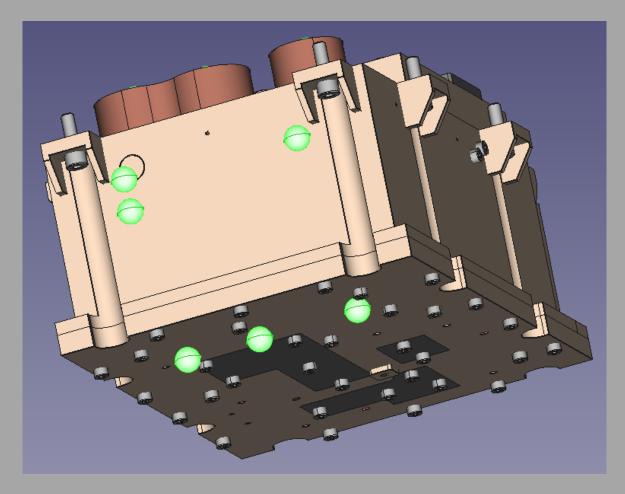
¹³⁷₅₅Cs

- γ (0.662 *MeV*);
- But where do we place the source?

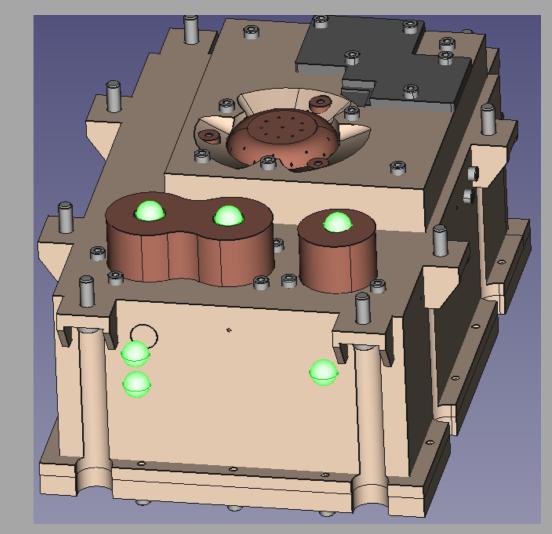
Experimental setup examples (green spheres represent source positions)

Geant4 Simulation Data aquisition

- Simulation Toolkit using Monte Carlo analysis;
- Simulation of Cs137 nuclei decay and its interaction with RADEM;
- Complete modelling of geometry and materials that make up the RADEM.

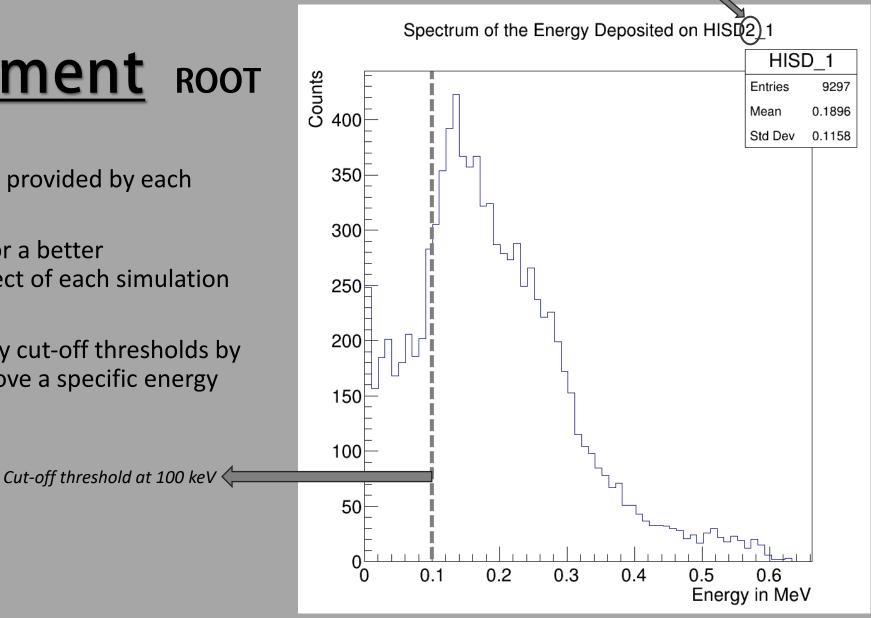

Simulation n.	Position Relative to Detector Stacks			
1	Top of PSD			
2	Top of HISD			
3	Top of ESD			
4	Bottom of PSD			
5	Bottom of HISD			
6	Bottom of ESD			
7	Middle of PSD			
8	Middle of ESD			
9	Middle of PSD (+13mm up)			

N. of Simulated Particles	
10 000 000	


Used to simulate the interaction of each decay with the RADEM detectors:

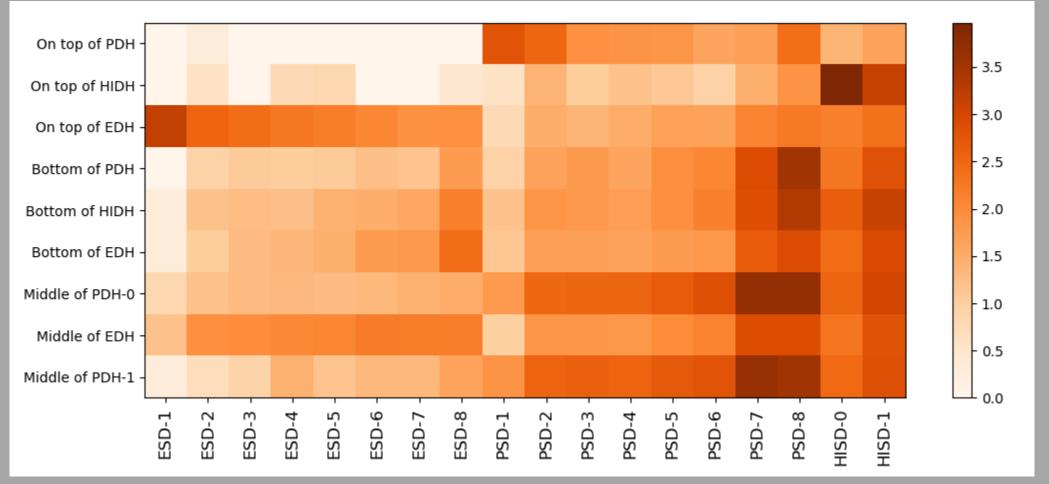
• Each simulation produces a .root file containing all the necessary data.

Geant4 Simulation



Data aquisition

Data Treatment ROOT


- Used to retrieve the data provided by each simulation;
- Creation of histograms for a better understanding of the effect of each simulation on each of the stacks.
- Capability to apply energy cut-off thresholds by selecting interactions above a specific energy

Example of a histogram for one of the HISD detectors

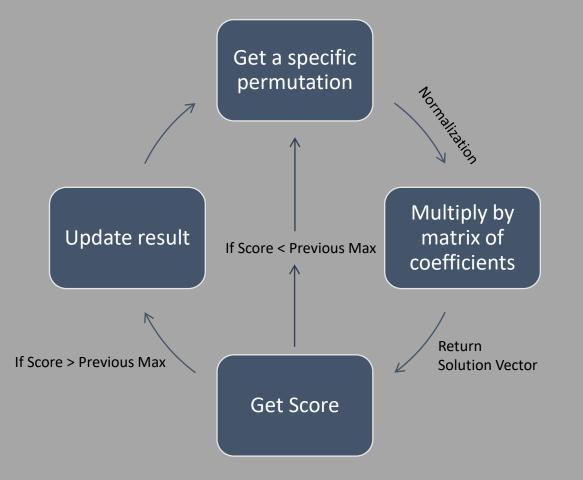
Simulation ID

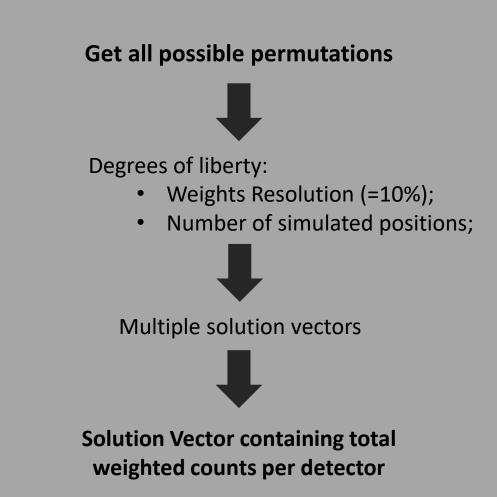
Detection Efficiency Implementation

Hitmap of all particles detected on every detector (Log10 scale)

Cut-off Threshold: 0 keV

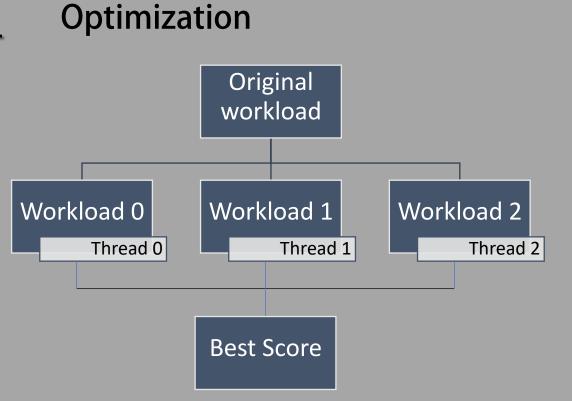
Weighting Algorithm


Implementation

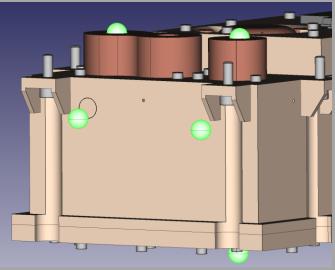

Finding the best combination of positions for source activity exposure.

Possible algorithms	Pros	Cons	
Brute force	Easy to Implement	Slower	\checkmark
Bayesian Optimization	Fewer calculations necessary	Need to speculate a function as reference as a starting point	×
Gradient Ascent (Gradient Descent)	Fast	Need more data points	X

Weighting Algorithm


Example

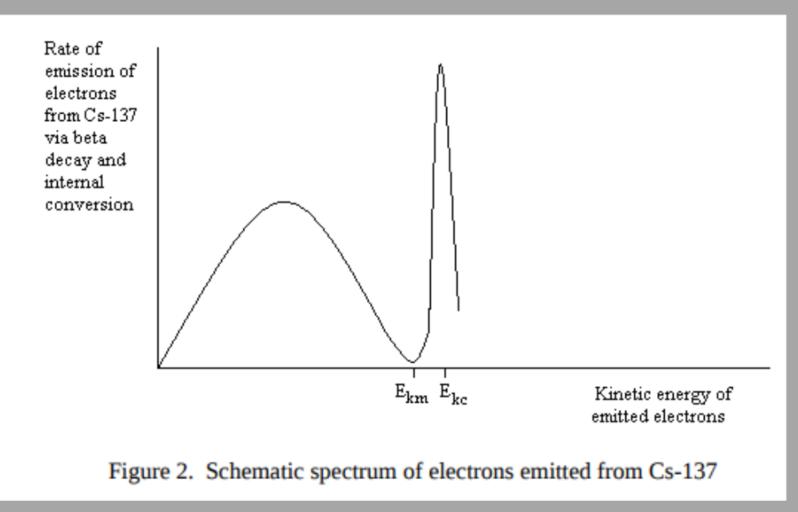
Weighting Algorithm


- Multithreading (using std::thread) :
 - Several concurrent threads;
 - Distributed workload;
 - All threads compete for the best overall score.

Runtime					
Unoptimized	Fully Optimized				
1h 47m 13s	<2 s				

Weighting Algorithm Results

Simulated Position	Time Spent in each position for each cut-off threshold					
	0 keV	100 keV	200 keV	300 keV	400 keV	
Top of PSD	13.3 %	9.5%	9.5 %	10.5 %	7.7 %	
Top of HISD	0.0 %	0.0%	0.0 %	0.0 %	0.0 %	
Top of ESD	20 %	28.6%	28.6 %	26.3 %	23.1 %	
Bottom of PSD	0.0 %	0.0%	0.0 %	0.0 %	0.0 %	
Bottom of HISD	0.0 %	0.0%	4.8 %	0.0 %	0.0 %	
Bottom of ESD	0.0 %	4.8%	4.8 %	0.0 %	0.0 %	
Middle of PSD	0.0 %	0.0%	0.0 %	0.0 %	0.0 %	
Middle of ESD	53.3 %	42.9%	38.1 %	47.4 %	46.2 %	
Middle of PSD (+13mm up)	13.4 %	14.2%	14.2 %	15.8 %	23.0 %	
Total exposure time (s)	3 392	7 011	14 189	36 190	157 575	



Example of selected positions for the cut-off energy of 100 keV

Future objectives/ further improvements

- Run more particle simulations to further improve statistical significance;
- Automation of the optimization process;
- Repeat the optimization procedure for the Directionality Detector;
- Account for β^- casing on the $^{137}_{55}Cs$ source;
- Experiment with different radiation sources ($^{60}Co \& ^{22}Na$);
- Running actual tests in person to compare to expected results.

<u>Backup</u>

