Muography of a building

LIP 2020 summer internships

Supervisors: Sofia Andringa, Raul Sarmento Interns: Luís Amorim, Magda Duarte

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Muons

- Source: collision of cosmic rays with Earth's atmosphere
- Energy: GeV to TeV
- Mass: 207 *m*_e
- Interaction with matter: poor

Muography

Our project

Our project

As a simple example, if the muon detector is near one of the walls there will be....

The detector

Data acquired

****	*****	**>	*******	**:	*******	**:	***	******	***	*******	**>	*********	**>	********	**
*	Row	*	Instance	*	Data	*		Hora	*	ChMax	*	Linha	*	Coluna	*
****	*****	***	*******	**	*******	**:	***	******	***	********	**>	********	***	********	**
*	0	*	0	*	191210	*	17	.429687	*	999	*	0	*	31	*
*	0	*	1	*	191210	*	17	.429687	*	51	*	0	*	19	*
*	0	*	2	*	191210	*	17	.429687	*	60	*	10	*	0	*
*	0	*	3	*	191210	*	17	.429687	*	60	*	10	*	0	*
*	1	*	0	*	191210	*	17	.429687	*	55	*	0	*	46	*
*	1	*	1	*	191210	*	17	.429687	*	60	*	10	*	0	*
*	1	*	2	*	191210	*	17	.429687	*	999	*	10	*	0	*
*	1	*	3	*	191210	*	17	.429687	*	24	*	0	*	-1	*

Filtering of data

o Criteria:

- 2 trigger planes
- events that cross the central region built of small square channels

15	19	10	28	35	53	44
3	7	23	29	36	41	57
16	20	11	30	37	54	45
4	8	24	31	38	42	58
17	21	25	32	39	55	46
5	9	26	33	52	43	59
18	22	27	34	40	56	47

• events that define a straight path for the muon

Filtering of data

o Criteria:

- 2 trigger planes
- events that cross the central region built of small square channels

15	19	10	28	35	53	44
3	7	23	29	36	41	57
16	20	11	30	37	54	45
4	8	24	31	38	42	58
17	21	25	32	39	55	46
5	9	26	33	52	43	59
18	22	27	34	40	56	47

• events that define a straight path for the muon

Important numbers (for planes displacement of 14,5 cm and 33,5 cm)

Vertical trajectory muon rate (focusing on the central region of the detector)

Detector's efficiency

March data

Efficiency of the not trigger plane of the detector Method I Efficiency of one detector's plane Method 2

Effl = $\frac{n}{n}$ umber of muons passing the same channel on plane 1,2 and 3 number of muons passing the same channel on plane 1 and $\frac{1}{2} \sqrt{\frac{1}{2}}$

experimental rate of vertical muons theoretical rate of vertical muons

Efficiency by method 2 of the center region of the detector's planes: March

Efficiency

0.8

0.7

0.6

0.5

0.4

0.3

10

5

15

(cm)

Efficiency by method 1 of the center region of the detector's planes: March

Detector's efficiency

March data

Detector's efficiency

• Study of its stability and uniformity

Efficiency by method 2 of the center region of the detector's planes: June

LIP summer internships 2020: Muography of a building

2D histogram of directions June

LIP summer internships 2020: Muography of a building

Results

Results

• Reconstruction of the trajectory: zenith and azimuth angles

Results

Study of the changes in the muon flux

Characteristics of the building (from the "detector's perspective"): - 6 ceilings

Color	Phi
Blue	90°
Green	180°
Grey	0°
Red	-90°

For each side of the building, how does the azimuthal angle influences the distance travelled inside matter (walls/ceilings) of the muon?

Data Collected -> 6 celling = 0,7 Damping Factor $D(6) = \exp(-6/\lambda) = 0.70 \Rightarrow \lambda = -6/\log(0.70) = 16.8 \text{ ceilings} (D(1) = \sqrt[6]{0.7} = 0.94)$ D(d) = exp(-d/16.8). -> Damping (d) in function of ceilings the muon went through

Relation between matter travelled and reductions in muon flux

Muon Damping per Azimutal Angle (Theta), different directions (diff. building sides).

Conclusions and next steps

• **Conclusion I:** The efficiency of the detector has increased and is very stable but is not uniform along the detector.

Next step Calculate the uniformity of the efficiency for each plane independently.

• Conclusion 2: Data seems consistent with the expected asymmetry between close and far walls, and analysis can be extended to full 2D.

Next step Confirm the results in new data with detector at different positions.

Thank you for your attention!