

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

DNN UNCERTAINTIES IN VLQ SEARCH AT LHC

Gilberto Cunha contact: gcacademic@outlook.pt

METHODOLOGY

DATA PRE-PROCESSING Clean data and apply cuts

02

CLASSIFY EVENTS

Deep Neural Network: Signal vs Background

03

ANALIZE DNN PREDICTION UNCERTAINTIES

Monte Carlo Dropout

VLQ SIGNAL

Fig. 2: VLQ general Feynman diagram

- Background data is dileptonic
- Focus on T to tZ decays to capture the dileptonic part of VLQ signal

DATA STRUCTURE

	Electron1_Eta	Electron1_PT	Electron1_Phi	Electron2_Eta	Electron2_PT	Electron2_Phi	Electron_Multi	FatJet1_Eta	
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0	0.482720	
1	-2.060421	30.932735	-1.365277	0.000000	0.000000	0.000000	1	0.000000	
2	-1.025947	40.282574	-1.773086	0.288352	26.2 <mark>01660</mark>	-0.694144	2	0.000000	
3	1.084838	82.556099	2.932473	0.000000	0.000000	0.000000	1	0.969367	
6	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0	0.000000	
49981	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0	0.856027	
49987	0.803573	115.304886	-2.760615	0.394527	63.806351	2.506781	2	-1.067106	
49988	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0	-0.674905	
49992	0.311730	141.319260	2.593879	0.543723	120.261703	1.999698	3	0.436267	
49999	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0	0.369915	

• Tabular

- Generated
- Experimental and generated features

Fig. 1: Pandas dataframe of the data

PRE-PROCESSING

Fig. 3: VLQ Feynman Diagram for cuts

Eq. 1: Gen weights computation

Fig. 5: Class size before and after cuts

Fig. 4: VLQ and BKGD total transverse energy distributions

- 1. Apply cuts: >= 2L and >= 1 Fat Jet
- 2. Calculate gen weights
- 3. Concatenate all samples

DATA DISTRIBUTIONS

Fig. 6: Pre-processed data feature distributions

- Weighted distributions -> Physical distributions
- Capture the physical differences between signal and background in the data
- These differences will allow the model to separate the two

THE MODEL

Layer (type)	Output Shape	Param #
input_11 (InputLayer)	[(None, 69)]	0
batch_normalization_15 (Batc	(None, 69)	276
dense_36 (Dense)	(None, 84)	5880
dropout_16 (Dropout)	(None, 84)	0
dense_37 (Dense)	(None, 49)	4165
dense_38 (Dense)	(None, 1)	50

Fig. 6: Model summary

- 69 input neurons
- Batch Normalization after input layer
- Hidden layers w/ relu activation
- Dropout layer on top of hidden layers
- 1 output neuron w/ sigmoid activation

def get_model(hidden_layers=[100, 100, 100], dropout=0.1, batch_norm=True, optimizer="Nadam", summary=True):
 """

This function creates a keras model, given the desired hidden_layers, dropout rate and optimizer of choice

hidden_layers -> [int]: size of each desired hidden layer dropout -> float: desired dropout rate optimizer -> string: optimizer you choose to utilize

returns a keras model

Generate model structure

inputs = keras.Input(shape=(69,))

bn = keras.layers.BatchNormalization()(inputs)

drop = bn

for i in range(len(hidden_layers)-1):

fc = keras.layers.Dense(hidden_layers[i], activation='relu')(drop)
if batch_norm:

bn = keras.layers.BatchNormalization()(fc)

else:

bn = fc

drop = keras.layers.Dropout(dropout)(bn, training=True)
fc = keras.layers.Dense(hidden_layers[-1], activation='relu')(drop)
outputs = keras.layers.Dense(1, activation='sigmoid')(fc)

Instanciate and compile model

return model

- Unbalanced classes -> class weights
- Weighted data -> gen weights
- Train, Validation and Test equal split

TRAINING

$$L = -\frac{1}{N} \sum_{i=1}^{N} \sum_{n=0}^{1} y_{i,n} \log(\hat{y_{i,n}})$$

Eq. 2: Binary Cross-Entropy Loss

Eq. 3: Class weights computation

$$\tilde{\omega}_i = \frac{\omega_i}{\sum_{i=1}^N \omega_i} \qquad L = -\sum_{i=1}^N \sum_{n=0}^1 c_n \,\tilde{\omega}_i \, y_{i,n} \log(\hat{y}_{i,n})$$

ΛT

1

Eq. 4: Normalized gen weights

Eq. 5: Weighted Binary Cross-Entropy Loss

HYPERPARAMETER TUNING

- Optimize model by tuning variable parameters
- Next parameters chosen by Bayesian Inference

Defining parameters

```
num_layers = trial.suggest_int("num_hidden_layers", 1, 4)
hidden_layers = []
```

```
for i in range(num_layers):
```

```
num_features = trial.suggest_int(f"num_features_layer_{i}", 20, 150)
hidden_layers.append(num_features)
```

```
dropout = trial.suggest_discrete_uniform("dropout", 0.05, 0.4, 0.01)
batch_size = trial.suggest_categorical("batch_size", [128, 256, 512])
batch_norm = trial.suggest_categorical("batch_norm", [True, False])
optimizer = "Adam"
```

```
es_patience = 10
```


Fig. 7: Hyperparameter search method comparison

```
num_models = 100
mcpreds = []
```

for _ in tqdm(range(num_models), total=num_models, desc="MCDropout"):
 mcpreds.append(model.predict(X_val))

mcpreds = np.array(mcpreds)

MCDropout: 100% 100/100 [03:55<00:00, 2.35s/it]

mc_means = mcpreds.mean(axis=0) mc_stds = mcpreds.std(axis=0)

- Dropout randomly zeros weights during forward pass
- Use dropout during predictions
- Make many predictions using the same model
- Take the mean as your final prediction
- Analyze predictions' standard deviation as a proxy for model prediction uncertainty

(a) Standard Neural Network

MONTE CARLO DROPOUT

(b) Network after Dropout

Fig. 8: Dropout Representation

Fig. 10: Background/Signal ratio reduction after predictions

Fig. 11: MCDropout predictions w/ thr=0.5

RESULTS

Model	ROC AUC
Regular	0.99673
MC Dropout	0.99692

Table 1: Model ROC AUCs

- VLQ is dominant in high prediction uncertainties
- All VLQ samples have similar uncertainty distributions
- Only some BKGD samples have high uncertainty
- High uncertainty -> Mixing similar VLQ and BKGD

RESULTS

Fig. 13: Std deviation distributions per data sample

CONCLUSIONS

01 02 03

DNNs showed good results in reducing background to signal ratio

MC Dropout didn't significantly improve the model

High prediction uncertainties arise from similarities in class distributions