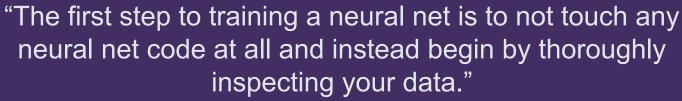
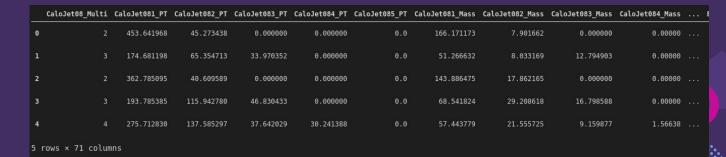

Introduction


Introduction - ATLAS

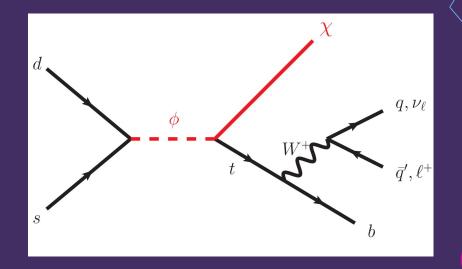
http://atlas.cern/discover/detector

- Andrej Karpathy



· . · · · · · · · · · · · · · · · · · ·						1 7					
	GenJet02_Multi	GenJet021_PT	GenJet022_PT	GenJet023_PT	GenJet024_PT	GenJet025_PT	GenJet021_Mass	GenJet022_Mass	GenJet023_Mass	GenJet024_Mass	
count	750000.000000	750000.000000	750000.000000	750000.000000	750000.000000	750000.000000	750000.000000	750000.000000	750000.000000	750000.000000	
mean	3.585093	218.988492	114.924698	56.917692	23.268296	8.619090	13.029389	8.281990	5.031884	2.363067	
std	1.293321	91.608875	56.953163	42.773353	30.644702	19.050968	6.831858	4.276064	3.640029	3.059804	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.000037	-0.000065	-0.000086	-0.000106	
25%	3.000000	158.540897	76.096834	30.780883	0.000000	0.000000	8.396796	5.474636	2.776319	0.000000	
50%	3.000000	211.244629	110.186356	52.686663	0.000000	0.000000	11.539050	7.559322	4.887335	0.000000	
75%	4.000000	269.106812	146.515869	80.774464	40.902470	0.000000	16.014464	10.325954	7.075413	4.442586	
max	14.000000	2293.890869	2292.538330	720.844849	505.682037	314.503204	181.089874	168.190033	52.145088	49.039822	

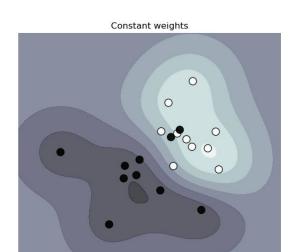
Statistics of an non processed signal sample

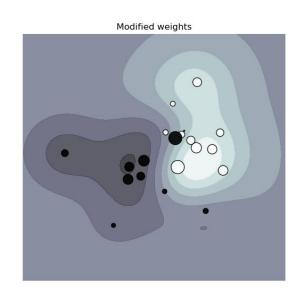


- -0 Leptons drop ratio: 0.3438 %
- -At least 1 B-Tag: 81.2528 %
- -At least 1 FatJet: 2.2760 %
- -Total drop rate: 81.3892 %

Signal Data:

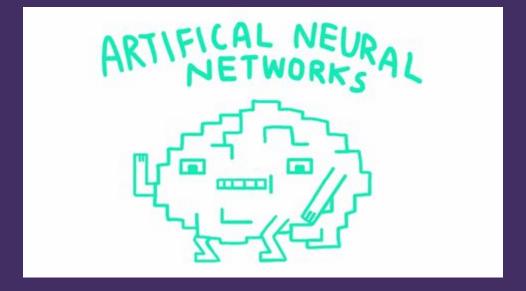
- -0 Leptons drop ratio: 0.5268 %
- At least 1 B-Tag: 34.2679 %
- At least 1 FatJet: 0.0074 %
- Total drop rate: 34.4409 %



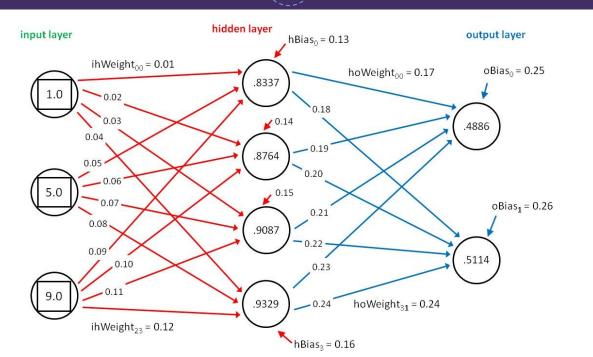

Data Pre-Processing - Sample and Class Weights

Bring balance to the force!

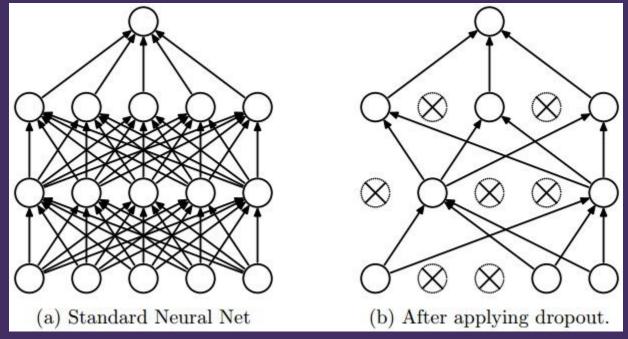
Data Pre-Processing - Sample and Class Weights



- Training Set Will be used to train the model,
- Validation Set Will provide an unbiased evaluation of a model fit on the training dataset using the loss and metrics.
- Test Set is used to provide an unbiased evaluation of how well the model generalizes to new data.



Deep Neural Networks (DNN)



Model: "functional_1"		
Layer (type)	Output Shape	Param #
========================= input_1 (InputLayer)	[(None, 69)]	 0
dense (Dense)	(None, 100)	7000
dropout (Dropout)	(None, 100)	0
dense_1 (Dense)	(None, 100)	10100
dropout_1 (Dropout)	(None, 100)	0
dense_3 (Dense)	(None, 30)	3030
dropout_3 (Dropout)	(None, 30)	0
dense_4 (Dense)	(None, 1)	31
======================================		=======================================

The Model - MC Dropout

The Model - Callbacks

- Early Stopping Max of 500 epochs and a patience monitoring the loss function of 30
- Tensorboard Enables the logging of training metrics and see their improvement though out training.
- Model Checkpoint only the best performing model iteration on the validation data would be keptas our final model.

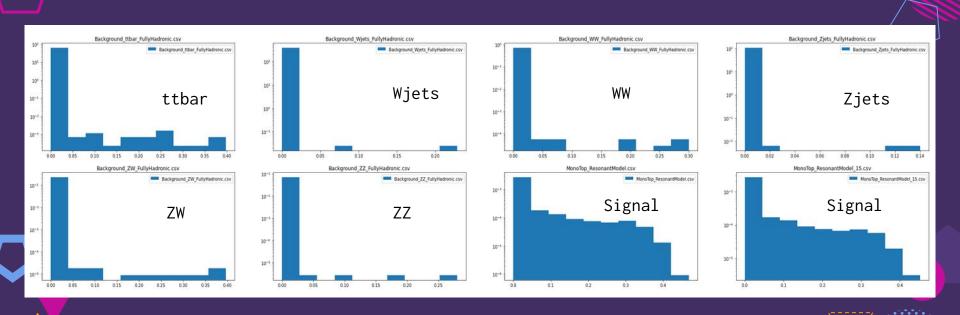

	ROC Score	Improvement
Without Dropout	0.8990490403416795	3#3
With Dropout	0.9934078794963115	10,5%
With MC Dropout	0.9947038946272739	10,6%

Figure 4: Evolution of the area under the ROC curve for the model without dropout. Figure 5: Evolution of the area under the ROC curve for the model with dropout implementation

Model Evaluation - Standard Deviation

Thanks!

Any questions?

You can find me at miguelpeixoto.net

