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How this tutorial will proceed
General idea

▪ I will guide you through some 
concepts using these slides

▪ We will then move on to Google 
Colab where I will guide you through 
a hands-on code-along tutorial to 
explore the concepts

▪ After each coding block, we will split 
the audience into breakout rooms 
(each with a tutor) for Q&A and 
clarifications

Big thanks to the helping tutors: Rute, 
Maura, Tiago!
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How this tutorial will proceed
outline

▪ Part I: What is Machine Learning?
○ Types of learning -> Focus on classification tasks
○ Introduction to Scikit-Learn package

▪ Part II: Ensembles and Neural Networks
○ Ensembles of trees
○ Intro do Neural Networks
○ Keras/TF

▪ Part III: Best practices and Higgs Dataset
○ Hyperparameter and model choice
○ Best practices
○ Higgs Dataset



               Part I - What is 
Machine Learning?
From an Artificial Intelligence Perspective



“ Artificial Intelligence is the quest of 
creating machines that think and 
act intelligently



Artificial Intelligence is a big topic 
and covers many problems

▪ Reasoning and Problem-solving
▪ Knowledge Representation
▪ Planning
▪ Learning
▪ Natural Language Processing
▪ Perception
▪ Motion and Manipulation
▪ Social Intelligence
▪ “General Intelligence”



Machine 
Learning is the 
subfield of AI 
that concerns 
how a machine 
can learn to 
perform tasks Machine Learning

Artificial 
Intelligence



Self-Taught Code
Machine Learning is a different 
paradigm of computing: a program 
that learns what it has to do



Classical 
Programming

Machine 
Learning

Rules Answers

RulesAnswers
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= Decision 
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= Data



               Machine Learning 
Taxonomy
What is out there and what tasks can 
we solve?



Machine Learning
Taxonomy: Types of Learning

The main differentiator is the type of learning, i.e. by task

▪ Supervised
○ Data includes the answers

▪ Unsupervised
○ Algorithm embodies the answers

▪ Other types
○ Semi-supervised
○ Self-supervised
○ Reinforcement



Machine Learning
Taxonomy: Supervised Learning

▪ The training data includes the answer we 
want to reproduce
○
○ X: Independent Variables/Features
○ y: Target Variables/Labels

▪ Assume (hope?) there exists a relation 
such that

▪ The model will approximate f,
▪ The type of y defines two sub-classes

○ y is a real variable: Regression
○ y is categorical: Classification

X y

X y
f

new X ŷ



Regression Example
Linear Regression
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Classification Example
Logistic Regression
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Classification Example
Logistic Regression Training

● Measure the quality of the predictions with a differentiable function: 
Loss function
○ For classification: Cross-entropy

○ For the binary case: Binary Cross-Entropy

● Iteratively correct the weights using gradient descent



Classification Example
Decision Tree
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Classification Example
Decision Tree Training

● For each feature, order the points by their values

● Find a value for that feature that maximises purity of a class on each 

side of the split

○ You can measure this purity using Gini score or Entropy (NOT 

cross-entropy)

● Repeat until there are no more splits left -- either all truncations are 

pure in one class or each data point is in its own leaf



Machine Learning
How to evaluate a classifier

● There are many metrics in the 
Machine Learning literature that 
help you assess the performance 
of a classifier

● We will be focus on two
○ Accuracy: The percentage of 

instances that are correctly 
classified

○ Area under ROC (Receiver 
operator characteristic) curve

p(y=1,x)

TP
R

FPR

Cheatsheet:

https://en.wikipedia.org/wiki/Receiver_oper
ating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic


1st hands-on
We will use Google Colab to run a 
few examples of classification 
algorithms using Scikit-Learn



Google Colab

● An online jupyter notebook host solution where you can do Machine 

Learning in Python

○ https://colab.research.google.com/

○ You do need a Google account

● It has all the relevant packages to do Data Science and Machine 

Learning pre-installed 

● You can use GPU and TPU acceleration, for free

https://colab.research.google.com/


Scikit-Learn
and the python Machine Learning ecosystem

● Scikit-Learn (https://scikit-learn.org/) is the go-to ML package for 

python

● It defined the best practices for ML API development

● Has great documentation and tutorials

● If this tutorial fails to teach you anything… 

learn ML from Scikit-Learn documentation!

https://scikit-learn.org/


Scikit-Learn
and the python Machine Learning ecosystem

● We will start by implementing a logistic regression and a decision tree

○ sklearn.linear.LogisticRegression

○ sklearn.tree.DecisionTreeClassifier  

● Not estimator modules worth remembering:

○ sklearn.preprocessing

○ sklearn.model_selection

○ sklearn.metrics



               Ensembles and Neural 
Networks
Forests, neurons, and all that jazz



Ensembles
Strength in numbers

● An Ensemble is an… ensemble of ML models 
● The idea is that the many weaker learners perform 

better together and produce a stronger learner
● Example: Random Forest is a collection of smaller 

trees (with a maximum depth) trained on subsamples 
of the data (bootstrapping)
○ The final prediction is given by average of the 

predictions -> This gives better generalisation 
than using a big tree alone

○ from sklearn.ensemble import 
RandomForestClassifier



Ensembles
Come in different shapes

● Although most of the ensembles techniques are based in Trees as the 
base model, there are many ways of building
○ I already mentioned Forests (a type of Bagging)
○ Another famous class are the Boosted ensembles (e.g. Boosted 

Decision Trees and Gradient Boosted Trees):
■ A sequence of trees that learn progressively more difficult 

cases
■ from sklearn.ensemble import AdaBoostClassifier,  

GradientBoostingClassifier



Ensembles
They are better than individual models

● Ensembles of Trees are very good baseline models and should be your 

first go-to choice for tabular data (i.e. excels, csv, etc)

● They improve generalisation of the base estimator and reduce the risk 

of overfitting

● They require little to no data preprocessing (when based on Trees), 

making them very attractive as out-of-the-box solutions



But trees (and 
respective 
ensembles) are 
too strict

1. They do not perform that well 
for non-tabular data (images, 
video, sound, text, etc)

2. Although they provide great 
supervised models, they lack 
versatility for other tasks

3. They are not intrinsically 
compatible with multiclass 
and multilabel problems

4. etc



Deep Learning is 
a subclass of 
Machine 
Learning 
algorithms that 
train Neural 
Networks to 
perform tasks

Machine Learning

Artificial 
Intelligence

Deep 
Learning



Differentiable models that can be trained 
with Stochastic Gradient Descent

Unmatched representational power and 
are capable of feature abstraction: deeper 
layers abstract more complex relations

Extremely versatile and can take in data of 
many different shapes and formats

All state-of-the-art Machine Learning 
applications are based on Deep Learning 
and implement Neural Networks

Deep Learning and Neural Networks
Terrible name, great idea



● Define how many layers and how 
many units (neurons) are in each layer, 
in addition to the non-linear activation

● Define the output
○ For binary classification: sigmoid

● Define the Loss function
○ For binary classification: binary 

cross-entropy
● Iteratively train on mini-batches of 

data. This is performed by an 
optimisation algorithm (we won’t be 
able to cover these in detail)

Deep Learning and Neural Networks
Defining and training



● Unlike trees, Neural Networks require some preprocessing
● The most common requirement is to standartise the inputs: set mean to 

0 and standard deviation to 1

● The reason for this is that the SGD applies weight updates 
layer-by-layer (chain rule over function composition), and too large 
activations will lead to too large updates => gradient explosion and 
unstable learning

● Scikit-Learn is your friend
○ from sklearn.preprocessing import StandardScaler
○ from sklearn.pipeline import make_pipeline

Deep Learning and Neural Networks
Preprocessing: Standartisation



Neural Networks
In python

● Scikit-Learn has a simple implementation of a Neural Network for 

classification (usually called a Multi-Layer Perceptron)

○ from sklearn.neural_network import MLPClassifier

● But we will look into a very famous dedicated framework: 

TensorFlow/Keras



Neural Networks
Are the present and the future

● Neural Networks has unleashed a revolution in Machine Learning 

applications

● Getting them to work requires some work and care, but the outcome is 

usually worth the trouble

● This is by no means a complete introduction, I recommend investing 

some time with the Keras documentation https://keras.io/examples/

● But this is not all! Also take a look at PyTorch and Jax, which might be 

more suitable to your needs and applications

https://keras.io/examples/


2nd hands-on
Let’s implement some implement 
some ensembles and neural 
networks using both Scikit-Learn 
and TensorFlow



Neural Networks
In python using TensorFLow/Keras

● We will use Keras packaged with TensorFlow
● A model is initiated with a Model class. We will use the Sequential

○ It takes a sequence of layers (classes from the layers module)
○ It connects them automatically sequentially
○ model = keras.models.Sequential([

○     keras.layers.Dense(100, activation='relu', input_shape=(2,)),

○     keras.layers.Dense(1, activation='sigmoid')

○    ])
● You then compile to define the Loss function, metrics, and the optimizer

○ model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy', keras.metrics.AUC()])

● Which you can then fit
○ model.fit(X_train, y_train, epochs=100) How SGD is implemented. Adam is 

always a good first choice



               Best practices and the 
Higgs Dataset
Because you only learn by doing



Model choice  and Hyperparameter Tuning
Neural Network shape

● We saw how the shape of the network 
affects its performance
○ The deeper (more hidden layers) 

and wider (number of units) the 
greater is the capacity

● The performance of the Neural 
Network can also be affected by the 
choice of non-linear activation function

● How to choose?
● Is there a risk of using too large a 

network?



Model choice  and Hyperparameter Tuning
Model Capacity
A model with insufficient capacity will fail to fit f: underfitting.

A model with too much capacity will fit the noise: overfitting.

x

y

x

y

x

y



Regularisation
In practice, one usually 
overestimates the capacity 
needed and then applies 
regularisation to prevent 
overfitting



Model choice  and Hyperparameter Tuning
Regularisation

● Many ways of regularising a ML 
model, which depend on the 
type of algorithm

● One that always helps with 
Neural Networks (and other 
iteration-based training 
algorithms) is early stop
○ Stop training when the 

loss/metric worsens on a 
validation set



Model choice  and Hyperparameter Tuning
Best practices: Three different splits!

● Split the dataset into three sets
○ Train: for fitting
○ Val: for validation
○ Test: to derive the final 

performance
● Never use the Test set at any 

stage of your training or 
validation => Information 
Leakage (a.k.a. cheating)

Full Dataset

Train Validation Test

In our case we want to retain a good 
statistical description of our data

1:1:1



Model choice  and Hyperparameter Tuning
Choosing the final hyperparameters

● Try different combinations of hyperparameters. For each:
○ Train the network with the training set
○ Use the validation set to stop early
○ Measure the metrics on the validation set

● In the end: pick the hyperparameter combination with the best 
validation set metrics

● If you learn how to do this you can become a professional Machine 
Learning engineer in the industry



Machine Learning in New Physics Analyses
Finding a needle in a particle haystack

● Now that you are proficient Machine Learning engineers, let’s do some 

physics with this!

● The idea is simple:

○ Data come

○ Data might have a signal we want to discover

○ Train a classifier to separate interesting events from the 

background

○ Make a discovery and profit (joking, someone else gets the Noble)



The Higgs Dataset

● Created in 2014 under the HiggsML challenge hosted by Kaggle 

https://higgsml.lal.in2p3.fr/

● The dataset is composed of pseudo-data (generated) Higgs (Signal) 

and other Standard-Model events (Background)

● The objective is to isolate as much signal as possible (Classification 

problem)

○ https://higgsml.lal.in2p3.fr/files/2014/04/documentation_v1.8.p

df

https://higgsml.lal.in2p3.fr/


               Further 
resources
Some of them are free



These 
are free



Not free, 
but very 
good



               ML@LIP

For those interested in working on these things



ML@LIP

● There’s a wide range of ML applications across the many groups at LIP

● I’m involved in applications that cover QCD pheno (Liliana’s talk), BSM 

searches (Nuno’s talk, Rute’s tutorial), and BSM pheno/model building

○ We have many ongoing projects suitable for BSc, MSc and PhD 

aspiring students

○ Drop me a line if you are considering pursuing your 

studies/research in HEP using ML



Thanks!
I hope this was useful
mcromao@lip.pt



3rd hands-on
Let’s do some physics with all this 
malarkey!


