
Machine Learning

LIP Internship Program
Summer 2020

A blitz hands-on tutorial

Miguel Crispim Romão
mcromao@lip.pt

How this tutorial will proceed
General idea

▪ I will guide you through some
concepts using these slides

▪ We will then move on to Google
Colab where I will guide you through
a hands-on code-along tutorial to
explore the concepts

▪ After each coding block, we will split
the audience into breakout rooms
(each with a tutor) for Q&A and
clarifications

Big thanks to the helping tutors: Rute,
Maura, Tiago!

Slides

Code-along

Q&A w/ tutors

Slides

Code-along

Q&A w/ tutors

Slides

Code-along

Q&A w/ tutors

Around 1h

How this tutorial will proceed
outline

▪ Part I: What is Machine Learning?
○ Types of learning -> Focus on classification tasks
○ Introduction to Scikit-Learn package

▪ Part II: Ensembles and Neural Networks
○ Ensembles of trees
○ Intro do Neural Networks
○ Keras/TF

▪ Part III: Best practices and Higgs Dataset
○ Hyperparameter and model choice
○ Best practices
○ Higgs Dataset

 Part I - What is
Machine Learning?
From an Artificial Intelligence Perspective

“ Artificial Intelligence is the quest of
creating machines that think and
act intelligently

Artificial Intelligence is a big topic
and covers many problems

▪ Reasoning and Problem-solving
▪ Knowledge Representation
▪ Planning
▪ Learning
▪ Natural Language Processing
▪ Perception
▪ Motion and Manipulation
▪ Social Intelligence
▪ “General Intelligence”

Machine
Learning is the
subfield of AI
that concerns
how a machine
can learn to
perform tasks Machine Learning

Artificial
Intelligence

Self-Taught Code
Machine Learning is a different
paradigm of computing: a program
that learns what it has to do

Classical
Programming

Machine
Learning

Rules Answers

RulesAnswers
Answers

New

= Decision
Function

= Data

 Machine Learning
Taxonomy
What is out there and what tasks can
we solve?

Machine Learning
Taxonomy: Types of Learning

The main differentiator is the type of learning, i.e. by task

▪ Supervised
○ Data includes the answers

▪ Unsupervised
○ Algorithm embodies the answers

▪ Other types
○ Semi-supervised
○ Self-supervised
○ Reinforcement

Machine Learning
Taxonomy: Supervised Learning

▪ The training data includes the answer we
want to reproduce
○
○ X: Independent Variables/Features
○ y: Target Variables/Labels

▪ Assume (hope?) there exists a relation
such that

▪ The model will approximate f,
▪ The type of y defines two sub-classes

○ y is a real variable: Regression
○ y is categorical: Classification

X y

X y
f

new X ŷ

Regression Example
Linear Regression

x

y

Classification Example
Logistic Regression

x1

x2

z

1

0.5

Sigmoid function

Classification Example
Logistic Regression Training

● Measure the quality of the predictions with a differentiable function:
Loss function
○ For classification: Cross-entropy

○ For the binary case: Binary Cross-Entropy

● Iteratively correct the weights using gradient descent

Classification Example
Decision Tree

2

x1
5

x2 X1>5

X2>2

Classification Example
Decision Tree Training

● For each feature, order the points by their values

● Find a value for that feature that maximises purity of a class on each

side of the split

○ You can measure this purity using Gini score or Entropy (NOT

cross-entropy)

● Repeat until there are no more splits left -- either all truncations are

pure in one class or each data point is in its own leaf

Machine Learning
How to evaluate a classifier

● There are many metrics in the
Machine Learning literature that
help you assess the performance
of a classifier

● We will be focus on two
○ Accuracy: The percentage of

instances that are correctly
classified

○ Area under ROC (Receiver
operator characteristic) curve

p(y=1,x)

TP
R

FPR

Cheatsheet:

https://en.wikipedia.org/wiki/Receiver_oper
ating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

1st hands-on
We will use Google Colab to run a
few examples of classification
algorithms using Scikit-Learn

Google Colab

● An online jupyter notebook host solution where you can do Machine

Learning in Python

○ https://colab.research.google.com/

○ You do need a Google account

● It has all the relevant packages to do Data Science and Machine

Learning pre-installed

● You can use GPU and TPU acceleration, for free

https://colab.research.google.com/

Scikit-Learn
and the python Machine Learning ecosystem

● Scikit-Learn (https://scikit-learn.org/) is the go-to ML package for

python

● It defined the best practices for ML API development

● Has great documentation and tutorials

● If this tutorial fails to teach you anything…

learn ML from Scikit-Learn documentation!

https://scikit-learn.org/

Scikit-Learn
and the python Machine Learning ecosystem

● We will start by implementing a logistic regression and a decision tree

○ sklearn.linear.LogisticRegression

○ sklearn.tree.DecisionTreeClassifier

● Not estimator modules worth remembering:

○ sklearn.preprocessing

○ sklearn.model_selection

○ sklearn.metrics

 Ensembles and Neural
Networks
Forests, neurons, and all that jazz

Ensembles
Strength in numbers

● An Ensemble is an… ensemble of ML models
● The idea is that the many weaker learners perform

better together and produce a stronger learner
● Example: Random Forest is a collection of smaller

trees (with a maximum depth) trained on subsamples
of the data (bootstrapping)
○ The final prediction is given by average of the

predictions -> This gives better generalisation
than using a big tree alone

○ from sklearn.ensemble import
RandomForestClassifier

Ensembles
Come in different shapes

● Although most of the ensembles techniques are based in Trees as the
base model, there are many ways of building
○ I already mentioned Forests (a type of Bagging)
○ Another famous class are the Boosted ensembles (e.g. Boosted

Decision Trees and Gradient Boosted Trees):
■ A sequence of trees that learn progressively more difficult

cases
■ from sklearn.ensemble import AdaBoostClassifier,

GradientBoostingClassifier

Ensembles
They are better than individual models

● Ensembles of Trees are very good baseline models and should be your

first go-to choice for tabular data (i.e. excels, csv, etc)

● They improve generalisation of the base estimator and reduce the risk

of overfitting

● They require little to no data preprocessing (when based on Trees),

making them very attractive as out-of-the-box solutions

But trees (and
respective
ensembles) are
too strict

1. They do not perform that well
for non-tabular data (images,
video, sound, text, etc)

2. Although they provide great
supervised models, they lack
versatility for other tasks

3. They are not intrinsically
compatible with multiclass
and multilabel problems

4. etc

Deep Learning is
a subclass of
Machine
Learning
algorithms that
train Neural
Networks to
perform tasks

Machine Learning

Artificial
Intelligence

Deep
Learning

Differentiable models that can be trained
with Stochastic Gradient Descent

Unmatched representational power and
are capable of feature abstraction: deeper
layers abstract more complex relations

Extremely versatile and can take in data of
many different shapes and formats

All state-of-the-art Machine Learning
applications are based on Deep Learning
and implement Neural Networks

Deep Learning and Neural Networks
Terrible name, great idea

● Define how many layers and how
many units (neurons) are in each layer,
in addition to the non-linear activation

● Define the output
○ For binary classification: sigmoid

● Define the Loss function
○ For binary classification: binary

cross-entropy
● Iteratively train on mini-batches of

data. This is performed by an
optimisation algorithm (we won’t be
able to cover these in detail)

Deep Learning and Neural Networks
Defining and training

● Unlike trees, Neural Networks require some preprocessing
● The most common requirement is to standartise the inputs: set mean to

0 and standard deviation to 1

● The reason for this is that the SGD applies weight updates
layer-by-layer (chain rule over function composition), and too large
activations will lead to too large updates => gradient explosion and
unstable learning

● Scikit-Learn is your friend
○ from sklearn.preprocessing import StandardScaler
○ from sklearn.pipeline import make_pipeline

Deep Learning and Neural Networks
Preprocessing: Standartisation

Neural Networks
In python

● Scikit-Learn has a simple implementation of a Neural Network for

classification (usually called a Multi-Layer Perceptron)

○ from sklearn.neural_network import MLPClassifier

● But we will look into a very famous dedicated framework:

TensorFlow/Keras

Neural Networks
Are the present and the future

● Neural Networks has unleashed a revolution in Machine Learning

applications

● Getting them to work requires some work and care, but the outcome is

usually worth the trouble

● This is by no means a complete introduction, I recommend investing

some time with the Keras documentation https://keras.io/examples/

● But this is not all! Also take a look at PyTorch and Jax, which might be

more suitable to your needs and applications

https://keras.io/examples/

2nd hands-on
Let’s implement some implement
some ensembles and neural
networks using both Scikit-Learn
and TensorFlow

Neural Networks
In python using TensorFLow/Keras

● We will use Keras packaged with TensorFlow
● A model is initiated with a Model class. We will use the Sequential

○ It takes a sequence of layers (classes from the layers module)
○ It connects them automatically sequentially
○ model = keras.models.Sequential([

○ keras.layers.Dense(100, activation='relu', input_shape=(2,)),

○ keras.layers.Dense(1, activation='sigmoid')

○])
● You then compile to define the Loss function, metrics, and the optimizer

○ model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy', keras.metrics.AUC()])

● Which you can then fit
○ model.fit(X_train, y_train, epochs=100) How SGD is implemented. Adam is

always a good first choice

 Best practices and the
Higgs Dataset
Because you only learn by doing

Model choice and Hyperparameter Tuning
Neural Network shape

● We saw how the shape of the network
affects its performance
○ The deeper (more hidden layers)

and wider (number of units) the
greater is the capacity

● The performance of the Neural
Network can also be affected by the
choice of non-linear activation function

● How to choose?
● Is there a risk of using too large a

network?

Model choice and Hyperparameter Tuning
Model Capacity
A model with insufficient capacity will fail to fit f: underfitting.

A model with too much capacity will fit the noise: overfitting.

x

y

x

y

x

y

Regularisation
In practice, one usually
overestimates the capacity
needed and then applies
regularisation to prevent
overfitting

Model choice and Hyperparameter Tuning
Regularisation

● Many ways of regularising a ML
model, which depend on the
type of algorithm

● One that always helps with
Neural Networks (and other
iteration-based training
algorithms) is early stop
○ Stop training when the

loss/metric worsens on a
validation set

Model choice and Hyperparameter Tuning
Best practices: Three different splits!

● Split the dataset into three sets
○ Train: for fitting
○ Val: for validation
○ Test: to derive the final

performance
● Never use the Test set at any

stage of your training or
validation => Information
Leakage (a.k.a. cheating)

Full Dataset

Train Validation Test

In our case we want to retain a good
statistical description of our data

1:1:1

Model choice and Hyperparameter Tuning
Choosing the final hyperparameters

● Try different combinations of hyperparameters. For each:
○ Train the network with the training set
○ Use the validation set to stop early
○ Measure the metrics on the validation set

● In the end: pick the hyperparameter combination with the best
validation set metrics

● If you learn how to do this you can become a professional Machine
Learning engineer in the industry

Machine Learning in New Physics Analyses
Finding a needle in a particle haystack

● Now that you are proficient Machine Learning engineers, let’s do some

physics with this!

● The idea is simple:

○ Data come

○ Data might have a signal we want to discover

○ Train a classifier to separate interesting events from the

background

○ Make a discovery and profit (joking, someone else gets the Noble)

The Higgs Dataset

● Created in 2014 under the HiggsML challenge hosted by Kaggle

https://higgsml.lal.in2p3.fr/

● The dataset is composed of pseudo-data (generated) Higgs (Signal)

and other Standard-Model events (Background)

● The objective is to isolate as much signal as possible (Classification

problem)

○ https://higgsml.lal.in2p3.fr/files/2014/04/documentation_v1.8.p

df

https://higgsml.lal.in2p3.fr/

 Further
resources
Some of them are free

These
are free

Not free,
but very
good

 ML@LIP

For those interested in working on these things

ML@LIP

● There’s a wide range of ML applications across the many groups at LIP

● I’m involved in applications that cover QCD pheno (Liliana’s talk), BSM

searches (Nuno’s talk, Rute’s tutorial), and BSM pheno/model building

○ We have many ongoing projects suitable for BSc, MSc and PhD

aspiring students

○ Drop me a line if you are considering pursuing your

studies/research in HEP using ML

Thanks!
I hope this was useful
mcromao@lip.pt

3rd hands-on
Let’s do some physics with all this
malarkey!

