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Abstract

Lattice Quantum Chromodynamics (LQCD) allows for non-perturbative first principles calcula-
tions by introducing a finite space-time lattice. The main focus of my research is the computation
of the gluon self interaction vertices, namely the propagator and the three and four gluon ver-
tices, using 804 and 644 lattices with 550 and 2000 gauge field configurations, respectively. The
correct tensor description in the lattice is studied using the gluon propagator. In this work it is
also shown how it is possible to correct for some lattice artifacts coming from the discretization
procedure, which breaks some symmetries of the theory. All the work is done with disregard for
the quark fields - we are working in the pure Yang-Mills formulation.

Introduction and Motivation

The theory describing Quarks and Gluons is called Quantum Chromodynamics (QCD). The dy-
namics is determined by its Lagrangian that, in the boson sector, is given by

LQCD = −1
4

Fa
µνFaµν (1)

where Aa
µ represents the gluon fields and Fa

µν the field-strength tensor,

Fa
µν = (∂µAa

ν− ∂νAa
µ) + g f abcAb

µAc
ν. (2)

Physical results, like correlation functions, are obtained in the path integral quantization from
the expectation values of the type,

〈O〉 = 1
Z

∫
DAµOe−

∫
d4xL (3)

using the generating functional/partition function Z in the Euclidean space-time. This formula-
tion, in combination with the Euclidean metric creates the correspondence between a quantum
field theory and a statistical mechanical problem - allowing for the use of computational methods
associated with the latter .

In LQCD expectation values are simply obtained with,

〈O〉 ∼ 1
N ∑

Unwith
probability

e−S[Un]

O[UN]. (4)

In addition, to use the lattice approach it is necessary to find discretized version of the various
mathematical objects.

Wilson Loop
Uµν(n)

Gluon
Uµ(n)

Lattice Wilson Action [4], and lattice field

SG[U] =
2
g2 ∑

n
∑

µ<ν
Re Tr

(
1−Uµν(n)

)
=

a4

2g2 ∑
n

∑
µ,ν

Tr
(

Fµν(n)2
)
+O

(
a2
)

(5)

Uµ(n) = eiaAµ(n+aµ̂/2)+O(a). (6)

Other than making possible to compute observables for QCD, the lattice formulation makes
the theory mathematically well defined since it provides a natural regularization scheme. The
non-perturbative approach using LQCD permits the study of the low momenta region of the
interactions between quarks and gluons and addresses, for example, the problem of why are the
fundamental particles of QCD confined within hadrons.

The focus of this work falls on the gluon propagator and self-interaction vertices - 2, 3 and 4
gluon correlation functions: 〈
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µ2(p2)
〉

p1 p1〈
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These objects depend on the gauge (we use the Landau gauge, pµAµ(p) = 0), and carry impor-
tant information about the theory:

• Building blocks for a quantum field theory;
•Description on confinement;
•Calculation of bound states - particles.

The main interest are the ‘pure’, amputated vertices Γ, related to the correlation function by the
external full propagators. For the three-gluon interaction the relation is〈

Aa1
µ1(p1)Aa2

µ2(p2)Aa3
µ3(p3)

〉
∝ Dµ1ν1(p1)Dµ2ν2(p2)Dµ3ν3(p3)Γ

a1a2a3
ν1ν2ν3(p1, p2, p3). (7)

Method and Lattice Artifacts

The main goal is to obtain the momentum dependence for the correlation functions, being as-
sembled by bosons and respecting gauge symmetry have various symmetry constraints. These
constraints reduce the dimension of the tensor basis used to describe the objects through the use
of form factors.

The description of lattice correlation functions using continuum tensors is not completely
suited since these respect continuum symmetries which are broken on the lattice - importance of
considering discretization corrections.

First we increase the statistics for each momentum configuration by averaging over the com-
plete discrete group symmetry - H(4) - Z4 Averaging:
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y
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O(4)
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x

y

To lessen the systematic errors from the discretization we consider various possible schemes:
Lattice tensors

Continuum tensors are not suited for the description of the correlation functions. We should
look for different tensor representations. There are some hints from lattice perturbation theory
that allows to substitute the normal momentum pµ with the lattice version [3],

p̃µ =
2
a

sin
(

pµ/2
)
. (8)

Structures that respect the H(4) symmetry are also considered to construct a full lattice basis

pµ → vn
ν = p2n+1

ν , n ∈ N

δµν, pµpν → dn,m
µν = p2n+1

µ p2m+1
ν , n, m ∈ N

Momentum Cuts

Momenta closer to the diagonal is preferred to reproduce the con-
tinuum results - discretization errors are suppressed in the diagonal
of the lattice [3]. This method eliminates all data for which the mo-
mentum configuration is far from the diagonal. Easily applied to
configurations with a single independent momentum scale.

H4 Method
This method considers explicitly the symmetry group invariants which label the different ‘or-

bits’ to which each O(4) orbit splits into [2, 1]. The concept of the correction is purely related
to the breaking of spherical symmetry. Generally, after the Z4 averaging there are still various
values for each momentum p. One can obtain a single, corrected value using the expansion in
the group invariants (p[n], n = 2, 4, 6, 8),

F
(

p[n]
)
≈ F

(
p2
)
+ p[4]

∂F
∂p[4]

(
p2, 0

)
+O

(
a2
)

. (9)

Using a linear regression on p[4] it is possible to estimate an O
(

a2
)

correction to the discretiza-
tion.

Results

To evaluate the completeness of a basis, a reconstruction procedure is considered

R =
∑µ,ν |D

orig
µν |

∑µ,ν |Drec
µν |

(10)
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Figure 1: Reconstruction ratio R for the lattice basis (left) and for the usual continuum basis (right). A kinematic
configuration out of the diagonal is also shown for comparison.

The IR behaviour for the propagator and
the three-gluon 1-PI should be affected by
the masslessness of the ghost. For the ver-
tex, the configuration (p, 0,−p) allows to
extract a single form factor Γ(p2). The
ghost dynamics is reflected in a logarith-
mic divergence and a zero-crossing around
∼ 0.2 GeV - see Fig. 2.
For the Four-gluon vertex, it is important to
select the kinematics that simplify the ten-
sor structure and also remove the discon-
nected parts of the correlation function.

−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.5 1 1.5 2 2.5

Γ(
p2 )

p (GeV)

1+z(1+ln(p2/µ2))

Figure 2: Three-gluon 1-PI function for low momentum.
The expected logarthmic divergence is shown at red.
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Figure 3: Four gluon form factors corresponding to the tree-level structure (left) and to the tensor Ga1a2a3a4
µ1µ2µ3µ4 (right)

with external propagators.
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