

Lisb@20²⁰

Fundação para a Ciência e a Tecnologia

Universidade do Minho Escola de Ciências

Search for new interactions on the top quark sector

<u>Ana Peixoto</u> Supervisor: Nuno Castro

LIP PhD Students Workshop - 25th to 27th of June of 2020

ATLAS PhD Grant 2019, SFRH/BD/129321/2017, CERN/FIS-PAR/0008/2017 and POCI/01-0145-FEDER-029147 PTDC/FIS-PAR/29147/2017, financiado por fundos OE/FCT, Lisboa2020, Compete2020, Portugal 2020, FEDER

MPETE 2020

Reminders on FCNC

- Fermion changing its **flavor** without changing its charge
- Forbidden at tree level and heavily suppressed at loop level by GIM mechanism in SM
- Several **BSM models** lead to FCNC contributions, often at tree level
- Top quark decays via FCNC presents a powerful probe of new physics

Reminders on FCNC

- FCNC processes possible in two modes
 - In **production**: **t+X** with X = H, Z, g, γ
 - In **decay**: **ttbar (t \rightarrow qX)** with q = u, c
 - Interference effects should be estimated Work done for tZq and tγq anomalous couplings with Nuno Castro and Maura Barros in collaboration with TU Dortmund: published in the EPJ+ in March

Search strategy FCNC *tZq*

- Analysis with full Run-2 ATLAS dataset (140 fb⁻¹)
 - Combining production and decay modes
 - Collaboration with Berlin, Tbilisi and Roma
- In production: single-top production ⇒ Particularly sensitive to tZu coupling
- In decay: ttbar decay (t → q Z, q=u,c) (including Soft Muon Tagging as charm-quark tagger)
- **Trileptonic** topology: $I^+ I^- + I + b$ -jets + E_T^{Miss}
- Main backgrounds: ttbar, ttbar+Z and diboson (WZ and ZZ) processes
- Split into two dedicated analyses with only tZu or tZc anomalous coupling

Signal regions FCNC *tZq*

- For the *utZ* coupling:
 - **Two signal regions** are defined focusing on the different channels
 - Shape differences between **left- and right-handed couplings** considered
- For the *ctZ* coupling:
 - Three signal regions with one dedicated to the charm-tagger with soft muon tagging
- Main differences between production and decay signal regions are:
 - Multiplicity of *b*-tagged jet
 - Reconstruction of two top-quarks for the decay case and only a top-quark and a more boosted Z boson (in comparison with decay) for the production case

Control regions FCNC *tZq*

- Control regions targeting ttbar and ttbar+Z processes: region focused on ttbar processes to determine the normalization from data
- Inverse cuts on the mass of the top quark candidates allows side-band control regions with the decay and production signal regions:

	Common selections							
Exactly 3 leptons with $ \eta < 2.5$ and $p_T(\ell_1) > 27 \text{ GeV}$, $p_T(\ell_2) > 15 \text{ GeV}$, $p_T(\ell_3) > 15 \text{ GeV}$								
tī CR	tī Z CR	Side-band CR1 tZu	Side-band CR1 tZc	Side-band CR2				
≥ 1 OS pair, no OSSF	$\geq 1 \text{ OSSF pair}$ with $ m_{\ell\ell} - 91.2 \text{ GeV} < 15 \text{ GeV}$ $m_{\pi}(\ell_{m}, \gamma) > 30 \text{ GeV}$	$\geq 1 \text{ OSSF pair}$ with $ m_{\ell\ell} - 91.2 \text{ GeV} < 15 \text{ GeV}$ $m_{\pi}(\ell_{vv}, \gamma) > 40 \text{ GeV}$	$\geq 1 \text{ OSSF pair}$ with $ m_{\ell\ell} - 91.2 \text{ GeV} < 15 \text{ GeV}$ $m_{\pi}(\ell_{\pi\nu}, \nu) > 40 \text{ GeV}$	$\geq 1 \text{ OSSF pair}$ with $ m_{\ell\ell} - 91.2 \text{ GeV} < 15 \text{ GeV}$ $m_{\rm T}(\ell_{\rm W}, \gamma) > 40 \text{ GeV}$				
≥ 1 jet with $ \eta < 2.5$ = 1 <i>b</i> -jet	$\geq 4 \text{ jet with } \eta < 2.5$ $= 2 b \text{ jet}$	$\geq 2 \text{ jet with } \eta < 2.5$ $= 1 b \text{-jet}$	$\geq 2 \text{ jet with } \eta < 2.5$ $= 1 b \text{-jet}$	$= 1 \text{ jet with } \eta < 2.5$ $= 1 b \text{-jet}$				
-		$-\frac{1}{ m_{e}^{\text{FCNC}} - 172.5 \text{GeV} } > 2\sigma^{FCNC}$	= 0 SMT anti- <i>b</i> -tagged jet $ m_{e}^{\text{FCNC}} - 172.5 \text{ GeV} > 2\sigma^{\text{FCNC}}$	-				
-	-	$ m_t^{\rm SM} - 172.5 {\rm GeV} > 2\sigma^{SM}$	$ m_t^{\rm SM} - 172.5 {\rm GeV} > 2\sigma^{SM}$	$ m_t^{\rm SM} - 172.5 {\rm GeV} > 2\sigma^{SM}$				

Signal and background discrimination FCNC *tZq*

- Boosted Decision Trees with Gradient boosting (BDTG) method from the TMVA tool used to discriminate signal from background
- Different variables considered for each signal region:

Decay signal region	Production signal region	Decay SMT signal region
M (SM), M(FCNC top quark)	M (SM top quark), M (W boson)	M (SM), M(FCNC top quark)
pT (u/c-quark), pT (b-quark)	pT(Z boson), pT (W boson), pT (b-quark)	pT (u/c-quark), pT (b-quark)
ΔR (SM, FCNC top quark), ΔR (u/c-quark, Z boson)	ΔR (Z boson, b-quark)	ΔR (SM, FCNC top quark), ΔR (u/c-quark, Z boson)

Multivariate discriminant FCNC *tZq*

Expected Limits FCNC *tZq*

- Profile likelihood with a signal strength µ and nuisance parameters for systematic uncertainties (as luminosity, pileup reweighting, Monte Carlo statistics, generators)
- Normalization uncertainty for main backgrounds as ttbar, diboson and tZj
- Experimental limits on branching ratio of t → q Z with q=u,c obtained using the BDTG score from each signal region and leading lepton pT from control regions
- Comparison between previous and current expected limits shows a significant improvement using the full run-2 dataset:

Limits	-1σ	Expected	$+1\sigma$
BR $(t \to uZ)$	3.4×10^{-5}	4.9×10^{-5}	7.1×10^{-5}
BR $(t \rightarrow uZ)$ - 36 fb ⁻¹	1.7×10^{-4}	2.4×10^{-4}	3.4×10^{-4}
BR $(t \to cZ)$	8.2×10^{-5}	11.7×10^{-5}	16.8×10^{-5}
BR $(t \rightarrow cZ)$ - 36 fb ⁻¹	2.2×10^{-4}	$3.2 imes 10^{-4}$	4.6×10^{-5}

Phenomenology New scalar *S* particle

- Phenomenological study on top decays with new scalar S in collaboration with Maria Ramos and Mikael Chala: see <u>arXiv:2005.09594</u>
 - Assuming the **top-quark with decays to a new scalar S and a light-quark** (up or charm)
 - Considering **different masses** for the new particle (from 20 to 150 GeV)
 - Focusing on three **decays** of the scalar particle: 1) t → Sq, S → µ⁺µ⁻,
 2) t → Sq, S → τ⁺ τ⁻ and 3) t → SSq, S → µ⁺µ⁻ with **leptonic or hadronic** decays of the top quark considered for different cases

Phenomenology New scalar *S* particle

- Limits on the branching ratios assuming a centre-of-mass energy of 13 TeV and a luminosity of 150 fb⁻¹
- For t → SSq, S → μ⁺ μ⁻ case: BR > 5 (25)×10⁻¹⁰ in the up (charm) channel for m(S) = 80 GeV

Conclusions & Next Steps

- First analysis focusing on tZq anomalous coupling with both production and decay modes exploiting from the Run-2 dataset collected by the ATLAS detector
 - Event selection defined and full machinery in place
 - Currently at the approval process within the collaboration
 - Seeking a publication during late Summer
- Phenomenological study considering a new particle with top quark decays via FCNC processes with distinct final states
- PhD thesis close to be finished and aiming for the defense at the end of the year

Thanks