6th IDPASC /LIP PhD Student Workshop

25-27 June 2020

Measurement of Te130 Two-Neutrino Double Beta Decay Half-life with the SNO+ Experiment: Analysis during the Partial Fill

Ana Sofia Carpinteiro Inácio

Supervisors: Prof. José Maneira & Dr. Valentina Lozza

The SNO+ Detector

SNOLAB, Canada, at a depth of 2km (rock, ~5900 mwe, ~63 cosmic muons/day)

Acrylic Vessel (AV) 6 m radius, 5 cm thickness

905 tonnes of ultra-pure water

780 tonnes of Liquid Scintillator

+ 3.9 tonnes of natural Tellurium Search for ¹³⁰Te Ονββ-decay

PMT Support Structure (PSUP)8.9 m radiusHolds 9400 PMTs + Concentrators

Currently almost ½ full (365 tonnes) Continuous Data Taking

SNO+ Physics Goals

1. Water phase

(Data taking 05/2017 - 07/2019)

- Detector calibration
- Background measurements
- Nucleon decay searches
- ⁸B solar neutrino flux
- 2. Scintillator phase
 - Background measurements
 - Low energy solar neutrinos
 - Geo and reactor antineutrinos
- 3. Tellurium phase
 - 2vββ decay lifetime of ¹³⁰Te
 - Ονββ decay search with ¹³⁰Te
 - Geo and reactor antineutrinos
- Supernova neutrinos in all phases!

(fill ongoing) Continuous data taking!

(planned for 2020)

Crucial to verify that the scintillator purity requirements are met

Analysis of Partial Fill data

$\beta\beta$ -Decay of ¹³⁰Te

Ονββ-Decay: Most promising way to prove the Majorana nature of neutrinos. Implies lepton number violation.

SNO+ Expected Energy Spectrum after 5 Years, Fiducial Volume of 3.3 m radius

SNO+ Expected Half-Life Sensitivity after 5 years: 2.1×10²⁶ years

 $m_{\beta\beta}$ range 37-89 meV (model dependent)

 $2\nu\beta\beta$ -Decay of ¹³⁰Te

Measuring the 2vββ Spectrum Tail

 Allows to understand the background contribution of 2vββ to the 0vββ region-of-interest (ROI).

Measuring with precision the $2\nu\beta\beta$ Half-life

• Experimentally verify the nuclear models used for the NMEs calculation.

$$\begin{bmatrix} T_{0\nu}^{1/2} \end{bmatrix}^{-1} = G_{0\nu} |\mathcal{M}_{0\nu}|^2 \left| \frac{m_{\beta\beta}}{m_e} \right|^2$$
Nuclear Matrix
Element (NME)

PhD Work Plan

Extract the ¹³⁰Te 2vββ-decay half-life by fitting the SNO+ data to the expected spectra and propagation of systematic uncertainties

Characterize the Detector Energy Response and Uncertainties - Optical and Energy Calibration Create a Detailed Model of the Backgrounds and develop/optimize rejection techniques

1 st Year	2 nd Year	3 rd Year	4 th Year
 Optical Calibration during the Water Phase Water attenuation + First in-situ measurement of Acrylic attenuation and PMT angular response up to 60 degrees Validation of the results using a gamma source Currently used for the Water Data Set II Analysis and valuable inputs for the next phases 		Extracting the 2 $ uetaeta$ half-life	
 Background simulation speed-up Factor 1.5 improvement for external backgrounds 	Monitoring the backgrounds during the scintillator fill		Or
	Developing a Binned Likelihood Analysis for signal extraction		
	Long term stay at SNOLAB	⁷ Be Solar Neutrinos	⁷ Be Solar Neutrinos Analysis
		$2\nu\beta\beta$ Analysis – determine best ROI for fit, study shape variations	<u>Dependent on</u> <u>SNO+ schedule</u>

Monitoring the Scintillator Backgrounds during the Fill

Tagging $^{214}\text{Bi}\text{-}^{214}\text{Po}$ coincidences, identify background contributions in the $0\nu\beta\beta$ region-of-interest

Target inside the scintillator for LS Phase: 1.0e-15 gU238/gLAB

SNO+ Acrylic = 1.0e-12 gU238/gLAB

Background for the $0\nu/2\nu$ and ⁷Be solar ν !

²¹⁴Bi-²¹⁴Po Coincidences

Use MC to optimize cuts and determine the tagging efficiency.

• Need to be up to 1 m away from the Bi candidate

²¹⁴Bi-²¹⁴Po Coincidences

Identify the Bi-Po events in data, reject them, and study the events left.

• Questions that I'm trying to answer with this analysis:

Is the tagging efficiency in MC different than for data? Do we have other background contributions?

- On-going work for each new scintillator level, using stable detector periods.
- Also using the ²¹⁴Bi-²¹⁴Po coincidences to study the detector light yield.

⁷Be Solar Neutrinos in the Partial Fill

⁷Be Solar Neutrinos

- Relevant measurement:
 - Flux and flavour content are used to test the Standard Solar Model
 - Looking for time dependences (seasonal or day-night) of the event rate

test different neutrino oscillation scenarios

Standard Solar Model Expected Flux: $(4.93 \pm 0.29) \times 10^9 \text{ cm}^{-2} \text{ s}^{-1}$ (GS98)

Borexino Measured Flux: $(2.79 \pm 0.13) \times 10^9 \text{ cm}^{-2} \text{ s}^{-1}$ (assuming ν_e only) $(4.43 \pm 0.22) \times 10^9 \text{ cm}^{-2} \text{ s}^{-1}$ (considering 3-flavour oscillation)

• Cross-check with the SNO+ solar neutrino multi-component likelihood analysis.

⁷Be Solar Neutrinos

B.R. 10.3%: ⁷Be + e⁻ \rightarrow ⁷Li* + ν_e (E_{ν} = 0.386 MeV)

$\begin{aligned} & \text{Expected Rate in SNO+} \\ & R = \Phi \; n \left\{ 0.897 \times \left(P_{ee} \sigma_{\nu_e} (E_{\nu} = 863 keV) + (1 - P_{ee}) \sigma_{\nu_{\mu},\nu_{\tau}} (E_{\nu} = 863 keV) \right) \\ & + 0.103 \times \left(P_{ee} \sigma_{\nu_e} (E_{\nu} = 386 keV) + (1 - P_{ee}) \sigma_{\nu_{\mu},\nu_{\tau}} (E_{\nu} = 386 keV) \right) \right\} \end{aligned}$

- $\Phi {}^{7}Be$ neutrino flux at Earth
- n number of electron targets in the scintillator
- Pee electron neutrino survival probability
- $\sigma_{\nu_{\chi}}$ total **neutrino-electron scattering** cross-sections

P_{ee} calculated considering:

- the ⁷Be ν production region in the Sun;
- the radial profile of e^- densities in the Sun.
- the best fit oscillation parameters from *M*. *Tanabashi et al. (PDG), Phys. Rev. D 98,* 030001 (2018) and 2019 update

Total of 17839 v ES events/yr/100t

Calculated for

each ⁷Be solar

neutrino energy

⁷Be Solar Neutrinos

Currently, determining the background contributions and respective levels in the ⁷Be ROI.

• Use alpha-beta classifiers, optimize cuts to reject externals, try directionality.

The final step will be to perform a Binned Maximum Likelihood fit of the MC p.d.f.s to the data.

- Evaluate uncertainties.
- Get a measurement or limit for the flux!

For *i* expected backgrounds and signal $\sum_{i=1}^{N_{norms}} N_i + \sum_{i=1}^{N_{bins}} N_{obs}^j \log\left(\sum_{i=1}^{N_{norms}} N_i\right)$

Normalisations for each type *i*

 $log \mathcal{L} = -$

counts observed in bin *j* (data) Value of the p.d.f for event type *i* in bin *j*

SNO+ moving towards Scintillator Phase! Detector ½ filled!

- Monitoring the backgrounds during the scintillator fill.
 - On-going work, adapting to the different fill levels.
- Developing a Signal Extraction Analysis, based on a binned maximum likelihood fit → Tool for signal extraction.
- Starting analysis of ⁷Be Solar Neutrinos in the scintillator phase.

Acknowledgements

This work is supported by FCT (Fundação para a Ciência e a Tecnologia), Portugal, through the research grant PTDC/FIS-NUC/0640/2014 and through the IDPASC PhD grant PD/BD/135468/2017.

