

Constraints on the χ_{c1} and χ_{c2} polarizations

6th IDPASC/LIP PhD Students Workshop 25-27 June 2020

Analysis team: Carlos Lourenço (CERN) Thomas Madlener and Ilse Krätschmer (HEPHY) Mariana Araújo, Pietro Faccioli and João Seixas (LIP)

arXiv:1912.07706 PRL 124 (2020) 162002.

Strong interactions

- The strong force binds quarks into nucleons and nucleons into atomic nuclei, determining the innermost structure of matter
- The interactions between quarks and gluons are described by quantum chromodynamics (QCD)
- Hadron formation involves non-perturbative processes and is not yet fully understood

Strong interactions

- The strong force binds quarks into nucleons and nucleons into atomic nuclei, determining the innermost structure of matter
- The interactions between quarks and gluons are described by quantum chromodynamics (QCD)
- Hadron formation involves non-perturbative processes and is not yet fully understood
- Quarkonia:
 - $\rightarrow~$ bound states of heavy quark-antiquark pairs
 - $\rightarrow~$ ideal probes to study hadron formation

Charmonium spectrum

- All states, except the $\psi(2S)$, are affected by feed-down decays
 - All measurements refer to "prompt" (direct+feed-down) production
 - Around 30% of the promptly produced J/ψ mesons are from feed-down decays
 - Non-prompt (NP) contributions from b-hadron decays can be removed experimentally

NRQCD - Non-Relativistic Quantum Chromodynamics

NRQCD is an effective field theory factorizing quarkonium production in two steps:

- 1. Creation of the initial quark-antiquark pair (perturbative QCD)
- 2. Hadronization of the pair into bound Quarkonium state Q (non-perturbative QCD)

Experimental observables

Cross sections

- Cannot easily distinguish between different subprocesses
 Polarization
 - Quarkonium states can be observed in different eigenstates of the angular momentum component J_z. Observing states in a preferred eigenstate is referred to as polarization
 - The polarization is reflected in the decay angular distribution of the quarkonium states

$$\mathcal{W}(\cosartheta, arphi | ec{\lambda}) \propto rac{1}{3 + \lambda_{artheta}} \Big(1 + \lambda_{artheta} \cos^2 artheta + \lambda_{arphi} \sin^2 artheta \cos 2arphi + \lambda_{artheta arphi} \sin 2artheta \cos arphi \Big)$$

Experimental status - cross sections in pp collisions

- Cross section measurements for seven states reported, at mid-rapidity, by ATLAS and CMS
- Universal pattern of the shapes as a function of p_T/M
- In stark contrast with the intrinsic diversity of the NRQCD SDCs

Experimental status - polarizations in pp collisions

- Measurements of prompt S-wave states exclude strong polarizations
- Very similar trends, despite vastly different feed-down contributions
- Polarization measurements of *P*-wave quarkonia are missing

Predicted polarizations of the χ_{c1} and χ_{c2} states

- In NRQCD, the χ_{c1} and χ_{c2} polarizations and cross sections are functions of one single parameter, K_{χ} , the ratio between the ${}^{3}P_{0}^{[1]}$ singlet LDME and the ${}^{3}S_{1}^{[8]}$ octet LDME, which is the same for all three χ_{cJ} states
- By fitting the χ_{c2} over χ_{c1} cross section ratios, measured by ATLAS and CMS, one determines the parameter K_{χ} , which is then used to predict the two polarizations
- Since there is only one parameter to fit, the result is strongly constrained

- Large and opposite polarizations are predicted for the χ_{c1} and χ_{c2}
- Measuring the χ_{c1} and χ_{c2} polarizations is a crucial test for NRQCD

$\chi_{ m c}$ reconstruction in CMS

- The $\chi_{\rm c}$ candidates are formed by combining a J/ψ with a photon
- The J/ψ is reconstructed through its dimuon decay
- The trigger selects events with two oppositely charged muons, compatible with originating from the same vertex
- The photon is reconstructed via conversion into an e^+e^- pair in the material of the tracker
- A kinematic vertex fit is used to evaluate if the photon and the J/ψ originate from a common vertex

- Measuring the χ_{cJ} polarization is equivalent to measuring the polarization of the J/ψ in the radiative $\chi_{cJ} \rightarrow J/\psi \gamma$ decay PRD 83, 096001 (2011)
- The photon is used to resolve the χ_{c1} and χ_{c2} signals in the χ_c mass distribution

- Measuring the χ_{cJ} polarization is equivalent to measuring the polarization of the J/ψ in the radiative $\chi_{cJ} \rightarrow J/\psi \gamma$ decay PRD 83, 096001 (2011)
- The photon is used to resolve the χ_{c1} and χ_{c2} signals in the χ_c mass distribution
- Similar angular momentum configurations can lead to very different angular decay distributions

Analysis strategy

- The $W(\cos \vartheta, \varphi | \vec{\lambda})$ distribution is sculpted by the event selection criteria and by the reconstruction efficiencies
- Shaping effects cancel in a relative measurement

$$R(\cos\vartheta|\lambda_{\vartheta}^{\chi_{c2}},\lambda_{\vartheta}^{\chi_{c1}}) = \frac{\int W(\cos\vartheta,\varphi|\vec{\lambda}_{\chi_{c2}})\,\mathrm{d}\varphi}{\int W(\cos\vartheta,\varphi|\vec{\lambda}_{\chi_{c1}})\,\mathrm{d}\varphi} \propto \frac{1+\lambda_{\vartheta}^{\chi_{c2}}\cos^2\vartheta}{1+\lambda_{\vartheta}^{\chi_{c1}}\cos^2\vartheta} \tag{1}$$
$$R(\varphi|\vec{\lambda}^{\chi_{c2}},\vec{\lambda}^{\chi_{c1}}) = \frac{\int W(\cos\vartheta,\varphi|\vec{\lambda}_{\chi_{c2}})\,\mathrm{d}\cos\vartheta}{\int W(\cos\vartheta,\varphi|\vec{\lambda}_{\chi_{c1}})\,\mathrm{d}\cos\vartheta} \propto \frac{1+\kappa^{\chi_{c2}}\cos(2\varphi)}{1+\kappa^{\chi_{c1}}\cos(2\varphi)}, \tag{2}$$

with $\kappa = \frac{3 - |\cos \vartheta|_{\max}^2}{3 + \lambda_\vartheta |\cos \vartheta|_{\max}^2} \lambda_\varphi$

• The χ_{c1} and χ_{c2} polarization parameters, λ_{ϑ} and λ_{φ} , can be deduced from the $\cos \vartheta$ or φ dependences of the χ_{c2}/χ_{c1} ratio

Data samples, event selection, etc

- The measurement uses data collected in pp collisions at $\sqrt{s} = 8 \, {\rm TeV}$, corresponding to ${\cal L} = 19.1 \, {\rm fb}^{-1}$
- The dimuons must be within $|y^{J/\psi}| < 1.2$
- Three *p*_T^{J/ψ} ranges are used: 8–12, 12–18 and 18–30 GeV
- Prompt dimuons are selected using their displacement from the primary vertex: $|c\tau|/\sigma_{c\tau} < 2.5$
- The measurement is done in the helicity frame (HX)
- The χ_{c2}/χ_{c1} ratios are obtained by simultaneously fitting the mass distributions in bins of $|\cos \vartheta|$ or φ

Mass fit model

- The fit model is a superposition of three peaks (χ_{c0} , χ_{c1} and χ_{c2}) and a smooth combinatorial background
- A few simple relations on some fit parameters are used to reduce the number of free parameters and minimize the effects of statistical fluctuations
- The $\chi_{\rm c2}/\chi_{\rm c1}$ ratio is a free parameter in all bins
- The model describes the data well in all $p_T^{J/\psi}$ ranges

Acceptance times efficiency corrections

 Acceptance times efficiency effects are corrected using high-granularity three-dimensional maps obtained from fast-simulation

$$\mathcal{A}(\cos\vartheta,\varphi,p_T^{J/\psi}) = \frac{(\cos\vartheta,\varphi,p_T^{J/\psi}) \text{ at reconstruction level}}{(\cos\vartheta,\varphi,p_T^{J/\psi}) \text{ at generation level}}$$

- Corrections are applied event-by-event
- Small kinematic differences between χ_{c1} and χ_{c2} are taken into account by using independent correction maps
- The probability of an event being a χ_{c1} or a χ_{c2} is calculated from the mass of the candidate, using the post-fit signal shapes

Yield ratios

The acceptance times efficiency corrections have a negligible effect on the trends; and the overall normalizations are irrelevant for the polarization measurement

Yield ratios

- The acceptance times
 efficiency corrections have a
 negligible effect on the
 trends; and the overall
 normalizations are
 irrelevant for the
 polarization measurement
- No azimuthal polarization differences

Yield ratios

- The acceptance times

 efficiency corrections have a
 negligible effect on the
 trends; and the overall
 normalizations are
 irrelevant for the
 polarization measurement
- No azimuthal polarization differences
- Ratios as a function of |cos v| disfavor unpolarized scenario and agree with NRQCD prediction

Systematic uncertainties

Sources of systematic effects

- 1. Mass fit model: Signal peaks
- 2. Mass fit model: Background continuum
- 3. Acceptance and efficiency corrections
- 4. Rejection of non-prompt mesons
- 5. Kinematic vertex fit probability cut
- We are only interested in effects that might lead to changes in the shape of the χ_{c2}/χ_{c1} yield ratio as a function of $|\cos \vartheta|$ or φ
- Changes in the normalization do not affect the polarization parameters

The systematic effects cancel to a very large extent in the *relative variation* of the χ_{c2}/χ_{c1} ratio \rightarrow the systematic uncertainties are negligible (less than 20% of the statistical uncertainties, in the worst case)

Two-dimensional contours

- Simultaneously fitting the three yield ratios as a function of |cos θ|, imposing p_T^{J/ψ} independent values of λ_θ^{χc1} and λ_θ^{χc2}
- The unpolarized scenario and more than half of the physically allowed region (red rectangle) are excluded at more than 99.7% CL

This is the first observation of significantly polarized quarkonium states

$\lambda_artheta^{\chi_{ m c2}}$ as a function of p_T/M

- We can fix $\lambda_{\vartheta}^{\chi_{c1}}$ to specific scenarios, so as to measure the corresponding $\lambda_{\vartheta}^{\chi_{c2}}$
 - The unpolarized option is strongly disfavoured
 - The NRQCD prediction is in good agreement with the data

Summary

- The study of heavy-quarkonium production in pp collisions offers the best path to understand hadron formation in (non-perturbative) QCD
- The production mechanisms are studied in NRQCD, a rigorous theory derived from QCD, with no empirical ingredients, that exploits the conjectured factorization of short- and long-distance effects in the limit of small relative velocity of the quark and antiquark forming the bound state
- The complexity and variety of kinematic behaviours (SDCs) predicted in NRQCD seems redundant with respect to the measured universal p_T/M scaling (all states) and lack of polarization (S-wave states)
- Before this measurement, we did not know if the (prompt) χ_{c1} and χ_{c2} P-wave quarkonia were also produced essentially unpolarized (as the S-wave states) or with strong and opposite polarizations (as predicted by NRQCD, through a very reliable computation)
- The conclusion is that NRQCD survived this crucial test with excellent marks

The unpolarized and p_T -independent scenario established by existing LHC data is

- Physically peculiar: it requires the cancellation of two (or more) oppositely polarized processes or the production from an intermediate J = 0 state; in fact, while not excluded in NRQCD, it is certainly not its *natural* prediction
- Unique among all vector particles: Drell-Yan dileptons and vector bosons are always
 produced with strong polarizations, changing significantly with p_T and rapidity

By combining the statistics of the Run 1 and Run 2 data samples, together with an analysis methodology that minimizes systematic uncertainties, we can probe these results with a higher precision, especially at high p_T , and see whether any deviations become evident.