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Strong interactions

= The strong force binds quarks into nucleons and
nucleons into atomic nuclei, determining the

. Neutron
innermost structure of matter

= The interactions between quarks and gluons are
described by quantum chromodynamics (QCD)

= Hadron formation involves non-perturbative Proton
processes and is not yet fully understood
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= The strong force binds quarks into nucleons and
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. Neutron
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= The interactions between quarks and gluons are
described by quantum chromodynamics (QCD)

= Hadron formation involves non-perturbative Proton

processes and is not yet fully understood

= Quarkonia:

— bound states of heavy quark-antiquark pairs J/¢-meson

— ideal probes to study hadron formation



Charmonium spectrum
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= All states, except the (25), are affected by feed-down decays
= All measurements refer to “prompt” (direct+feed-down) production
= Around 30% of the promptly produced J/v¢» mesons are from feed-down decays
= Non-prompt (NP) contributions from b-hadron decays can be removed experimentally



NRQCD - Non-Relativistic Quantum Chromodynamics

NRQCD is an effective field theory factorizing quarkonium production in two steps:
1. Creation of the initial quark-antiquark pair (perturbative QCD)
2. Hadronization of the pair into bound Quarkonium state Q (non-perturbative QCD)
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Experimental observables
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t Cross sections

= Cannot easily distinguish between different subprocesses

t Polarization

= Quarkonium states can be observed in different eigenstates
of the angular momentum component J,. Observing states
in a preferred eigenstate is referred to as polarization

= The polarization is reflected in the decay angular distribution

of the quarkonium states
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Experimental status - cross sections in pp collisions
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= Cross section measurements for seven states reported, at mid-rapidity,
by ATLAS and CMS

= Universal pattern of the shapes as a function of pr/M
= |n stark contrast with the intrinsic diversity of the NRQCD SDCs



Experimental status - polarizations in pp collisions
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= Measurements of prompt S-wave states exclude strong polarizations

= Very similar trends, despite vastly different feed-down contributions

= Polarization measurements of P-wave quarkonia are missing



Predicted polarizations of the y.; and ., states

= In NRQCD, the xc1 and x2 polarizations and cross sections are functions of one single
parameter, K,, the ratio between the 3P£1] singlet LDME and the 35{8] octet LDME,
which is the same for all three x., states

= By fitting the .2 over X1 cross section ratios, measured by ATLAS and CMS, one
determines the parameter K\, which is then used to predict the two polarizations

= Since there is only one parameter to fit, the result is strongly constrained
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are predicted for the x.1 and xc2
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s = Measuring the x.1 and X2 polarizations

EPJC 78 (2018) 268 is a crucial test for NRQCD
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Xc reconstruction in CMS

CMS-DP-2011-006

= The . candidates are formed by combining
a J/1 with a photon

» The J/1) is reconstructed through its dimuon decay e //
= The trigger selects events with two oppositely /“/
charged muons, compatible with originating from =
the same vertex g n
160007 L
= The photon is reconstructed via conversion into an  Zuwo
ete™ pair in the material of the tracker %;ZZZ:
= A kinematic vertex fit is used to evaluate if the 3
photon and the J/4 originate from a common fZ:Z:
vertex o0or .



Y. polarization
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= Measuring the ., polarization is equivalent to <
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= The photon is used to resolve the .1 and x.2 signals
in the x. mass distribution i 05 0 05 1
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Y. polarization

1

= Measuring the ., polarization is equivalent to
measuring the polarization of the J/1 in the
radiative x.y — J/1~y decay PRD 83, 096001 (2011)

= The photon is used to resolve the .1 and x.2 signals

in the y. mass distribution 1 05 0 05 1
= Similar angular momentum configurations can lead As
to very different angular decay distributions any g/Y
fromX, @ @
>
from x, ®oe



Analysis strategy

= The W(cos ¥, p|X) distribution is sculpted by the event selection criteria and by the
reconstruction efficiencies

= Shaping effects cancel in a relative measurement
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= The Xxc1 and X2 polarization parameters, Ay and A, can be deduced from

with kK =

the cos ¥ or ¢ dependences of the xc2/xc1 ratio
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Data samples, event selection, etc

= The measurement uses data collected in pp collisions at
/s = 8TeV, corresponding to £ = 19.1fb~!

= The dimuons must be within [y?/%| < 1.2

Events

= Three p-Jr/d} ranges are used: 10";

8-12, 12-18 and 18-30 GeV ;'-.\.
= Prompt dimuons are selected using their displacement 10’; \‘-\N

from the primary vertex: |cT|/ocr < 2.5 \\"\M
= The measurement is done in the helicity frame (HX) L;""s“"m"“15""zo"“zs‘“55“55“;‘1)‘0‘1‘|a‘};‘;§o

» The xc2/Xc1 ratios are obtained by simultaneously
fitting the mass distributions in bins of |cos¥| or ¢
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Mass fit model
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The fit model is a superposition of three
peaks (Xc0, Xc1 and xc2) and a smooth
combinatorial background

A few simple relations on some fit
parameters are used to reduce the
number of free parameters and minimize
the effects of statistical fluctuations

The xc2/Xc1 ratio is a free parameter in
all bins
The model describes the data well in all

p-Jr/ Y ran ges
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Acceptance times efficiency corrections

= Acceptance times efficiency effects are corrected using < e
70
high-granularity three-dimensional maps obtained from 60
fast-simulation ig
J/’[/J . 30
I (cos¥, ¢, p7’ ") at reconstruction level 20
A(cos, p, p7 ") = 7% : 10 50
(cos¥, p, p7 ") at generation level o oo, .,
|cos8¥|
= Corrections are applied event-by-event 3 ‘ —
< tph>3.5Gev-|
= Small kinematic differences between x.1 and y.p are taken  § toh> 4.0 Gev
< pl>4.5GeV |
into account by using independent correction maps %067 L }pt> 5.0 Gev
o~ P {p!>55Gev
= The probability of an event being a x.1 or a xc2 is calculated %OA, o ]
from the mass of the candidate, using the post-fit signal é”* ]
shapes g ol ‘
0 0.2 0.8 1
|cos9H¥|

13



Yield ratios
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Yield ratios
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= The acceptance times
efficiency corrections have a
negligible effect on the
trends: and the overall
normalizations are
irrelevant for the

polarization measurement

= No azimuthal polarization
differences
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Yield ratios
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The acceptance times
efficiency corrections have a
negligible effect on the
trends: and the overall
normalizations are
irrelevant for the

polarization measurement

No azimuthal polarization
differences

Ratios as a function of
|cos | disfavor unpolarized
scenario and agree with
NRQCD prediction
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Systematic uncertainties

Sources of systematic effects

Mass fit model: Signal peaks
Mass fit model: Background continuum
Acceptance and efficiency corrections

Rejection of non-prompt mesons

ok wnd e

Kinematic vertex fit probability cut

= We are only interested in effects that might lead to changes in the shape
of the xc2/Xc1 yield ratio as a function of |cos¥| or ¢

= Changes in the normalization do not affect the polarization parameters

The systematic effects cancel to a very large extent in the relative variation
of the xc2/Xxc1 ratio — the systematic uncertainties are negligible
(less than 20% of the statistical uncertainties, in the worst case)
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Two-dimensional contours
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A\¥? as a function of pr/M
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= We can fix )\§°1 to specific scenarios, so as to measure the corresponding Af§“2

= The unpolarized option is strongly disfavoured

= The NRQCD prediction is in good agreement with the data
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= The study of heavy-quarkonium production in pp collisions offers the best path to
understand hadron formation in (non-perturbative) QCD

= The production mechanisms are studied in NRQCD, a rigorous theory derived from QCD,
with no empirical ingredients, that exploits the conjectured factorization of short- and
long-distance effects in the limit of small relative velocity of the quark and antiquark
forming the bound state

= The complexity and variety of kinematic behaviours (SDCs) predicted in NRQCD seems
redundant with respect to the measured universal pr/M scaling (all states) and lack of
polarization (S-wave states)

» Before this measurement, we did not know if the (prompt) x.1 and x.2 P-wave quarkonia
were also produced essentially unpolarized (as the S-wave states) or with strong and
opposite polarizations (as predicted by NRQCD, through a very reliable computation)

= The conclusion is that NRQCD survived this crucial test with excellent marks
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Outlook: improved measurement of J/ polarization

The unpolarized and pr-independent scenario established by existing LHC data is

» Physically peculiar: it requires the cancellation of two (or more) oppositely polarized
processes or the production from an intermediate J = 0 state;
in fact, while not excluded in NRQCD, it is certainly not its natural prediction

s Unique among all vector particles: Drell-Yan dileptons and vector bosons are always
produced with strong polarizations, changing significantly with pr and rapidity

By combining the statistics of the Run 1 and Run 2 data samples, together with an
analysis methodology that minimizes systematic uncertainties, we can probe these
results with a higher precision, especially at high py, and see whether any deviations
become evident.
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